# 195. Photochemische Reaktionen

111. Mitteilung [1]

# Zur Photochemie $\alpha, \beta$ -ungesättigter $\gamma, \delta$ -Epoxyester I<sup>1</sup>): Singulett- versus Triplettreaktivität<sup>2</sup>)

von Alex Peter Alder, Hans Richard Wolf und Oskar Jeger

Organisch-chemisches Laboratorium der Eidgenössischen Technischen Hochschule, CH-8092 Zürich

(13. VIII. 80)

# Photochemistry of $\alpha, \beta$ -Unsaturated $\gamma, \delta$ -Epoxyesters I: Singlet versus Triplet Reactivity

# Summary

On triplet excitation (E)-2 isomerizes to (Z)-2 and reacts by cleavage of the  $C(\gamma)$ ,O-bond to isomeric  $\delta$ -ketoester compounds (3 and 4) and 2,5-dihydrofuran compounds (5 and 19, s. Scheme 1). – On singulet excitation (E)-2 gives mainly isomers formed by cleavage of the  $C(\gamma)$ , $C(\delta)$ -bond (6-14, s. Scheme 1). However, the products 3-5 of the triplet induced cleavage of the  $C(\gamma)$ ,O-bond are obtained in small amounts, too. The conversion of (E)-2 to an intermediate ketonium-ylide **b** (s. Scheme 5) is proven by the isolation of its cyclization product 13 and of the acetals 16 and 17, the products of solvent addition to **b**. – Excitation ( $\lambda = 254$  nm) of the enol ether (E/Z)-6 yields the isomeric  $\alpha$ , $\beta$ -unsaturated  $\varepsilon$ -ketoesters (E/Z)-8 and 9, which undergo photodeconjugation to give the isomeric  $\gamma$ ,  $\delta$ -unsaturated  $\varepsilon$ -ketoesters (E/Z)-10. – On treatment with BF<sub>3</sub>O(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub> (E)-2 isomerizes by cleavage of the C( $\delta$ ),O-bond to the  $\gamma$ -ketoester (E)-20 (s. Scheme 2). Conversion of (Z)-2 with FeCl<sub>3</sub> gives the isomeric furan compound 21 exclusively.

1. Einleitung. – In vorausgehenden Arbeiten wurden Parameter aufgezeigt, welche die Photochemie  $\alpha,\beta$ -ungesättigter  $\gamma,\delta$ -Epoxyketone festlegen [3] [4]. Bei diesen Untersuchungen blieb jedoch die Multiplizität der angeregten Elektronenzustände, aus denen die nachgewiesenen Reaktionen erfolgten, unbestimmt, da die intensive, bis 400 nm reichende Endabsorption der konjugierten  $\gamma,\delta$ -Epoxyenone keine eindeutige Aussagen zu den Versuchsergebnissen der Triplettanregung mit Carbonylsensibilisatoren wie Aceton, Acetophenon bzw. Benzophenon zuliess.

<sup>&</sup>lt;sup>1</sup>) Bzgl. Teil II s. [2].

Auch gelang es nicht, die Photoreaktivität der  $\alpha,\beta$ -ungesättigten  $\gamma,\delta$ -Epoxyketone durch intermolekulare Energieübertragung zu löschen, da offenbar die Lebensdauer der Anregungszustände der Enonverbindungen hierzu nicht ausreichte.

In der vorliegenden Arbeit wurde die Tatsache genutzt, dass  $\alpha,\beta$ -ungesättigte  $\gamma,\delta$ -Epoxyester im Unterschied zu den entsprechenden Epoxyenonen oberhalb 280 nm bei der  ${}^{1}n,\pi^{*}$ -Anregung von Keton-Sensibilisatoren keine Eigenabsorption zeigen [5].

Da sich in der Reihe konjugierter  $\gamma$ ,  $\delta$ -Epoxyenone das (E)-5, 6-Epoxy-5, 6-dihydro- $\beta$ -jonon (1) als die Verbindung mit dem breitesten photochemischen Reaktionsspektrum erwiesen hatte [3], schien es sinnvoll, für die Sensibilisierungsversuche den entsprechenden, aus  $\beta$ -Jonon leicht erhältlichen<sup>2</sup>)  $\alpha$ ,  $\beta$ -ungesättigten  $\gamma$ ,  $\delta$ -Epoxyester (E)-2 [6] zu wählen. Zunächst wurde überprüft, ob (E)-2 unter Singulettanregung ( $\lambda = 254$  nm) die gleichen Typen von Photoprodukten wie (E)-1 ergibt und dann untersucht, welche dieser Verbindungen aus einem Triplettzustand gebildet werden.



<sup>&</sup>lt;sup>2</sup>) Vgl. A. P. Alder, Diss. ETH. Nr. 6577 (1980).

**2. Bestrahlungsversuche.** – 2.1. Photolysen von (E)-2. 2.1.1. Photolysen mit Licht von  $\lambda = 254$  nm. Die Ergebnisse der Bestrahlungen ca. 0,05 molarer Lösungen in Pentan, Diäthyläther bzw. Acetonitril sind in der Tabelle 1 zusammengefasst und die Produkte im Schema 1 aufgeführt.

| Um-               | Produktverteilung <sup>a</sup> ) [%] |                         |                         |    |                         |   |                                   |                   |    |    |    |    |    |
|-------------------|--------------------------------------|-------------------------|-------------------------|----|-------------------------|---|-----------------------------------|-------------------|----|----|----|----|----|
| satz<br>[%]       | (Z)- <b>2</b>                        | <b>3</b> <sup>f</sup> ) | <b>4</b> <sup>f</sup> ) | 5  | <b>6</b> <sup>f</sup> ) | 7 | <b>8</b> <sup>f</sup> )+ <b>9</b> | 10 <sup>r</sup> ) | 11 | 12 | 13 | 14 | 15 |
| 75 <sup>b</sup> ) | 10                                   | 6                       | 3                       | 17 | 3                       | 1 | 17                                | _                 | 4  | 13 | <1 | _  | <1 |
| 90 <sup>b</sup> ) | 2                                    | 10                      | 5                       | 13 | _                       | 4 | 14                                | 2                 | 4  | 12 | <1 | -  | 7  |
| 85°)              | 10                                   | 5                       | 1                       | 12 | 6                       | 4 | 23                                | 2                 | 3  | 6  | 5  | 1  | <1 |
| 75 <sup>d</sup> ) | 16                                   | 6                       | 1                       | 5  | 1                       | 1 | 3                                 | _                 | 4  | 8  | 23 | 4  | 8  |
| 90ª)              | 4                                    | 9                       | 1                       | 7  | _                       | 8 | 1                                 | -                 | 4  | 8  | 23 | 5  | 11 |
| 90°)              | 5                                    | -                       | -                       | -  | -                       | - | -                                 | -                 | -  | -  |    | -  | 85 |

Tabelle 1. Ergebnisse der Photolysen von (E)-2 in Pentan, Diäthyläther bzw. Acetonitril

<sup>a</sup>) Die Werte beziehen sich auf die Menge an umgesetztem Reaktant.

<sup>b</sup>) In Pentan.

°) In Diäthyläther.

<sup>d</sup>) In Acetonitril.

e) In Acetonitril/Wasser 3 : 1.

<sup>f</sup>) Summe der Anteile der (E/Z)-Isomere.

In Acetonitril- $d_3$ . Bei 80 proz. Umsatz der ca. 0,54 molaren Lösung von (E)-2 lagen in der Produktenlösung die Verbindungen (Z)-2, (E)-3, 5 und 12 vor (<sup>1</sup>H-NMR.-Analyse).

In 2-Propanol. Bei 90 proz. Umsatz der ca. 0,05 molaren Lösung von (E)-2 wurden erhalten<sup>3</sup>): 8% 5, 1% 11, 15% 12, 10% 15 und 46% 16 (s. Schema 1).

In Methanol (unter Zusatz von  $Na_2CO_3$ ). Bei vollständigem Umsatz der ca. 0,05 molaren Lösung von (E)-2 wurden erhalten<sup>3</sup>): 13% (Z)-2, 7% (E)-3 und 68% 17.

2.1.2. Triplettsensibilisierung mit Licht von  $\lambda \ge 280$  nm. Die Versuchsergebnisse sind in der Tabelle 2 angegeben und die Produkte im Schema 1 aufgeführt.

| Sensibilisator             | Umsatz von (E)-2 | Produktverteilung [%] <sup>a</sup> ) |               |               |               |               |    |    |  |
|----------------------------|------------------|--------------------------------------|---------------|---------------|---------------|---------------|----|----|--|
|                            | [%]              | $\overline{(Z)-2}$                   | (E)- <b>3</b> | (Z)- <b>3</b> | (E) <b>-4</b> | (Z)- <b>4</b> | 5  | 19 |  |
| Aceton <sup>b</sup> )      | 85               | 13°)                                 | 30            | 12            | 9             | 6             | 20 | _  |  |
| Acetophenon <sup>d</sup> ) | 90               | 3°)                                  | 27            | 20            | 20            | 5             | 8  | 3  |  |

Tabelle 2. Ergebnisse der Triplettsensibilisierung ( $\lambda \ge 280 \text{ nm}$ ) von (E)-2

<sup>a</sup>) Die Werte beziehen sich auf die Menge an umgesetztem (E)-2.

<sup>b</sup>) Lösungsmittel.

<sup>c</sup>) Die Aufarbeitung des Photolyse-Rohproduktes war mit der Umwandlung von (Z)-2 zu 18 verbunden. Isoliert wurden: 3% (Z)-2, 10% 18 (vgl. Kap. 3.2, Hydrolyse von (Z)-2).

d) Lösungsmittel: Benzol; die Lösung war 0,045 molar an (E)-2 und 0,06 molar an Acetophenon.

<sup>e</sup>) s. Fussnote c; isoliert wurden: 3% 18 und Spuren von (Z)-2.

<sup>3</sup>) Die Werte beziehen sich auf die Menge an umgesetztem Reaktant.

2.2. Photolysen von (Z)-2. 2.2.1. In Acetonitril-d<sub>3</sub> mit Licht von  $\lambda = 254$  nm. Der <sup>1</sup>H-NMR.-spektroskopischen Kontrolle des Verlaufes der Bestrahlung einer ca. 0,5 molaren Lösung von (Z)-2 in Acetonitril-d<sub>3</sub> zufolge trat zunächst Isomerisierung zu (E)-2 auf. Bei 40 proz. Umsatz von (Z)-2 lag ein Produktenbild vor, das demjenigen der Photolyse von (E)-2 in Acetonitril-d<sub>3</sub> entsprach (s. Kap. 2.1).

2.2.2. Triplettsensibilisierung ( $\lambda \ge 280 \text{ nm}$ ). Unter <sup>1</sup>H-NMR.-spektroskopischer Kontrolle wurde eine ca. 0,28 molare Lösung von (Z)-2 in Aceton-d<sub>6</sub> bestrahlt. Zunächst trat Isomerisierung zu (E)-2 auf; beim Vorliegen eines (1:1)-Gemisches von (E/Z)-2 wurde die Bildung von 5 beobachtet.

2.3. Triplettsensibilisierung ( $\lambda \ge 280 \text{ nm}$ ) von (E)-3 bzw. (Z)-3. Die Bestrahlung ca. 0,2 molarer Lösungen von (E)-3 bzw. (Z)-3 in Aceton- $d_6$  führte jeweils zu einem (2 : 3)-Gemisch von (E/Z)-3 (<sup>1</sup>H-NMR.-Analyse).

2.4. Photolysen von (E)- bzw. (Z)-6 in Acetonitril-d<sub>3</sub> mit Licht von  $\lambda = 254$  nm. Bei vollständiger Reaktantumsetzung der ca. 0,17 molaren Lösungen in Acetonitril-d<sub>3</sub> wurde als Produktenverteilung<sup>3</sup>) (GC.-Analyse) im Falle von (E)-6 erhalten: 45% (E)-8, 25% (Z)-8, 15% 9 sowie Spuren von (E/Z)-10; im Falle von (Z)-6: 27% (Z)-8, 35% 9, 35% (E/Z)-10 sowie Spuren von (E)-8.

2.5. Photolysen von (E)-8 mit Licht von  $\lambda = 254$  nm. 2.5.1. In Pentan. Eine ca. 0,07 molare Lösung von (E)-8 wurde bis zu vollständigem Umsatz bestrahlt. Produkt-verteilung<sup>3</sup>): 40% (E)-10 und 50% (Z)-10.

2.5.2. In Acetonitril- $d_3$ . Eine ca. 0,2 molare Lösung von (E)-8 wurde unter <sup>1</sup>H-NMR.-spektroskopischer Kontrolle bestrahlt. Zunächst trat Isomerisierung zu (Z)-8 auf. Nach der völligen Umsetzung von (E/Z)-8 lag ein (1:1)-Gemisch von (E/Z)-10 vor.

2.6. Photolyse von (Z)-8 mit Licht von  $\lambda = 254$  nm. Bei 90proz. Umsetzung der ca. 0,14 molaren Lösung von (Z)-8 in Acetonitril- $d_3$  lag ein ca. (1,5:1)-Gemisch von (E/Z)-10 vor (<sup>1</sup>H-NMR.-Analyse).

2.7. Photolysen von 13 mit Licht von  $\lambda = 254$  nm. Eine ca. 0,045 molare Lösung von 13 in Pentan bzw. eine 0,44 molare Lösung in Acetonitril- $d_3$  wurde jeweils bis zu 95 proz. Umsatz bestrahlt, wobei als Produkt zu 47% bzw. 75% 14 anfiel<sup>3</sup>).

3. Weitere Versuche. – 3.1. Lewissäure-katalysierte Isomerisierung von (E)-2 bzw. (Z)-2. Bei der Umsetzung mit Bortrifluorid-äthylätherat ergab (E)-2 den konjugierten Keto-en-ester 20 (95%)<sup>4</sup>) (s. Schema 2). Das (Z)-Isomer von 2 hingegen wandelte sich bei der Zugabe katalytischer Mengen von FeCl<sub>3</sub> quantitativ in das  $\alpha$ -Methoxyfuran 21 (s. Schema 2) um.

3.2. Hydrolyse von (Z)-2. Die Umsetzung von (Z)-2 mit Oxalsäure in wässerigem Dioxan ergab quantitativ das Hydroxylacton 18 (s. Schema 1)<sup>5</sup>).

<sup>&</sup>lt;sup>3</sup>) Die Werte beziehen sich auf die Menge an umgesetztem Reaktant.

<sup>&</sup>lt;sup>4</sup>) Eine analoge Isomerisierung wurde im Falle des (E)-2 entsprechenden (E)-5, 6-Epoxy-5, 6-dihydro-βjonons (1) beobachtet [3].

<sup>&</sup>lt;sup>5</sup>) Das Produkt 18 wurde auch bei den Versuchen zur Triplettsensibilisierung von (E)-2 erhalten (s. Tabelle 2, Fussnoten c und e). Da 18 weder IR.- noch <sup>1</sup>H-NMR.-spektroskopisch in den Photolyse-Rohprodukten nachgewiesen werden konnte, darf angenommen werden, dass es bei der Aufarbeitung durch Hydrolyse von (Z)-2 gebildet wurde.

4. Struktur der Produkte. – 4.1. Epoxy-en-ester (Z)-2. Die Verbindung (Z)-2 wie auch das (E)-Isomer ergaben bei der Hydrierung (10 proz. Pd/CaCO<sub>3</sub>) den  $\gamma, \delta$ -Epoxyester 22 (s. Schema 2). Ansonsten ergibt sich die Struktur von (Z)-2 aus dem Vergleich der Spektraldaten mit denjenigen von (E)-2 [6]. Hierbei ist bemerkenswert, dass (Z)-2 im Unterschied zum (E)-Isomer in den NMR.-Spektren bei RT. als Konformerengemisch auftritt. So sind im <sup>13</sup>C-NMR.-Spektrum die Signale von (Z)-2 z. T. verbreitert oder erscheinen als Doppelbanden. Wird die Probe erwärmt, so bildet sich bei 80° ein Koaleszenzspektrum aus (s. exper. Teil).

4.2. Ketoester (E/Z)-3 und (E/Z)-4. Die Struktur der Produkte ergibt sich aus den spektralanalytischen Daten (vgl. u. a. die Zuordnung der NMR.-Daten im exper. Teil). Durch katalytische Hydrierung an Pd/CaCO<sub>3</sub> wurde (E/Z)-3 bzw. (E/Z)-4 in den  $\delta$ -Ketoester 23 bzw. 24 (s. Schema 2) übergeführt.



4.3. Dihydrofuranprodukte 5 und 19. Die Struktur der Epimeren 5 und 19 geht aus dem Vergleich ihrer Spektraldaten mit denjenigen der Methylidenverbindungen 25 [7] und 26 [7] hervor<sup>6</sup>). So tritt im <sup>1</sup>H-NMR.-Spektrum der *cis*-Verbindungen 5 und 25 das olefinische H-Atom als d (J = 2 Hz) auf, während die *trans*-Verbindungen 19 und 26 für dieses H-Atom lediglich ein verbreitertes *s* zeigen<sup>7</sup>). Die Ableitung der Strukturen 5 und 19 stützt sich auch auf die Beobachtung, dass der aus 5 mittels LiAlH<sub>4</sub>-Reduktion erhaltene *cis*-Alkohol 27 (s. Schema 2) bei der Zugabe von Eu(dpm)<sub>3</sub> für das *s* der Methylgruppe am C(6) eine stärkere Tieffeldverschiebung zeigt als der epimere, aus 19 erhaltene *trans*-Alkohol 28 (s. *Tabelle 3* im exper. Teil).

4.4. Enoläther (E/Z)-6. Die (E/Z)-Isomere 6 erwiesen sich als instabil und wurden nur in kleinen Mengen in *ca.* 90 proz. Reinheit erhalten. Die Strukturableitung stützt sich auf die Interpretation der spektralanalytischen Daten (s.

<sup>&</sup>lt;sup>6</sup>) Der Ester 5 epimerisierte sich durch Umsetzung mit Lithiumisopropylcyclohexylamid in Tetrahydrofuran zu 19 (s. exper. Teil).

<sup>&</sup>lt;sup>7</sup>) Vgl. Diskussion in [7]; die Konfiguration von 25 und 26 wurde auf chemischem Wege bestimmt.

exper. Teil). So wird die Enolätherbande im IR.-Spektrum von (E)-6 bei 1680 cm<sup>-1</sup> und im Falle von (Z)-6 bei 1675 cm<sup>-1</sup> beobachtet. Das <sup>1</sup>H-NMR.-Spektrum von (E)-6 weist für die olefinischen H-Atome der  $\alpha, \beta$ -ungesättigten Estergruppe bei 6,40 ppm den AB-Teil eines ABX-Systems auf  $(\delta_A = 6,82, \delta_B = 5,98, \delta_X = 4,37 \text{ ppm};$  $J_{AB} = 16, J_{AX} = 5, J_{BX} = 2$  Hz), wogegen für (Z)-6 die entsprechende AB-Signalgruppe bei 5,85 ppm mit einer kleineren Kopplungskonstanten  $(J_{AB} = 11 \text{ Hz})$ erscheint (vgl. exper. Teil).

4.5. Enolätherverbindung 7. Die NMR.-Analyse zeigt, dass 7 vermutlich sterisch einheitlich ist, doch geben die Spektraldaten keine eindeutigen Hinweise zur Konfiguration. Die Strukturableitung des nur in kleinen Mengen anfallenden Produktes erfolgte aus dem Vergleich dessen Daten mit denjenigen des Methylketons **29** [3] (s. Schema 2). Wie **29** weist der Ester 7 im IR.-Spektrum eine Enolätherbande bei 1680 cm<sup>-1</sup> auf. Im <sup>1</sup>H-NMR.-Spektrum wird für die zur Estergruppe vicinalen, allylischen H-Atome ein d bei 2,97 ppm (J = 6,5 Hz) und für das olefinische H-Atom der Seitenkette ein t bei 5,03 ppm (J = 6,5 Hz) beobachtet.

4.6.  $\alpha,\beta$ -Ungesättigte  $\varepsilon$ -Ketoester (E/Z)-8 und 9. Die Konstitution der Produkte wurde aus den Daten der Spektralanalyse (s. z. B. die Zuordnung der NMR.-Daten im exper. Teil), die Konfiguration hingegen auf chemischem Wege abgeleitet. So lieferte die Reduktion von (E)-8 mit NaBH<sub>4</sub> den Alkohol 30 (s. Schema 3), der als Rohprodukt mit KMnO<sub>4</sub> umgesetzt und in die Lactonverbindung 31 übergeführt wurde. Schliesslich konnten die (E/Z)-Isomeren von 8 mittels katalytischer Hydrierung (Pd/CaCO<sub>3</sub>) in ein identisches Reduktionsprodukt 32 umgewandelt werden, wogegen aber bei der Hydrierung von 9 der zu 32 epimere Ketoester 33 anfiel. Die Annahme, dass bei der Verbindung 9 die Acetylgruppe



und das  $\alpha, \beta$ -ungesättigte Estersystem in einer *trans*-Anordnung vorliegen, erfolgte aus dem Befund, dass 9 im Unterschied zu (E)-8 nicht in das Lacton 31 übergeführt werden konnte.

4.7.  $\beta,\gamma$ -Ungesättigte  $\varepsilon$ -Ketoester (E/Z)-10. Die Struktur von (E/Z)-10 ergibt sich aus den Spektraldaten (s. exper. Teil). Es sei hier erwähnt, dass die allylischen Methylenwasserstoffatome der Seitenkette im Falle von (Z)-10 als schwach verbreitertes d bei 2,81 ppm (J = 7,5 Hz), im Falle von (E)-10 aber als  $d \times d$  auftreten ( $\delta = 3,16$  ppm;  $J_1 = 7,5$ ,  $J_2 = 1,5$  Hz; homoallylische Kopplung mit H-C(5')).

4.8. Allenverbindung 11. Der Vergleich der spektralanalytischen Daten mit denjenigen des Allen-ketons 34 [3] (s. Schema 3) verweist auf das Vorliegen eines Produktes der Konstitution 11. Die Hydrierung von 11 (Pd/CaCO<sub>3</sub>) ergab quantitativ den Ketoester 35, dessen Struktur eindeutig aus den Daten der Spektralanalyse (s. exper. Teil) ableitbar ist.

4.9. Cyclopropenverbindung 12. Das Produkt 12 zeigt im IR.-Spektrum bei 1790 cm<sup>-1</sup> eine Bande, die derjenigen der (C=C)-Streckschwingung von Cyclopropenen entspricht<sup>8</sup>). Im <sup>1</sup>H-NMR.-Spektrum von 12 erscheinen die Cyclopropenwasserstoffatome als *d* bei 2,06 und 6,23 ppm mit der für Cyclopropene charakteristischen Kopplungskonstanten von 2 Hz<sup>8</sup>). Schliesslich wurde der Strukturvorschlag 12 durch den Befund bestätigt, dass bei der Hydrierung (PtO<sub>2</sub>; Äthanol; 0°) von 12 die Cyclopropylverbindung 37 (57%), und unter Hydrogenolyse des Dreiringes der Ketoester 38 (21%) entstand (s. Schema 3; zu den Strukturen 37 und 38 vgl. NMR.-Daten im exper. Teil).

4.10. Enoläther 13. Die Konstitution von 13 wurde aus dem Vergleich der Spektraldaten (s. exper. Teil) mit denjenigen des Enoläthers 39 [8] (s. Schema 3) abgeleitet. Beide Verbindungen weisen im IR.-Spektrum bei 1640 cm<sup>-1</sup> eine Enolätherschwingungsbande auf. Das <sup>1</sup>H-NMR.-Spektrum von 13 zeigt für die Dihydrofuranwasserstoffatome je ein d bei 3,77 und 4,97 ppm, deren Kopplung jeweils 2 Hz beträgt (39: je ein d bei 3,90 und 5,04 ppm; J = 1,5 Hz). Auf das Vorliegen der Struktur 13 verweisen zudem Lage und Multiplizität der <sup>13</sup>C-NMR.-Signale (vgl. exper. Teil).

4.11. Cyclopropylverbindung 14. Der Strukturvorschlag 14 stützt sich auf die Analogie der Spektraldaten mit denjenigen des Cyclopropylketons 40 [8] (s. Schema 3). So bilden die Cyclopropylwasserstoffatome von 14 im <sup>1</sup>H-NMR.-Spektrum ein AB-System (J = 8 Hz) bei 2,50 ppm aus (40: AB-System bei 2,80 ppm; J = 8,5 Hz [8]), und die tertiären Cyclopropylkohlenstoffatome im <sup>13</sup>C-NMR.-Spektrum je ein d bei 35,3 und 41,9 ppm (40: je ein d bei 33,4 und 40,3 ppm [8]).

4.12. Diketoester 15. Der Vergleich der spektralanalytischen Daten mit denjenigen des 1, 4, 9-Triketons 43 [9] (s. Schema 3) verweist auf das Vorliegen eines Produktes der Struktur 15.

4.13. Acetale 16 und 17. Die Strukturen von 16 und 17 lassen sich anhand der Spektraldaten (s. exper. Teil) bis auf die Konfiguration der Doppelbindung ableiten. Beide Verbindungen ergeben bei der Hydrolyse mit Oxalsäure in wässerigem Dioxan den Diketoester 15. Von den strukturbelegenden NMR.-Signalen (s. exper. Teil) des Acetals 16 sei hier erwähnt, dass im <sup>1</sup>H-NMR.-Spektrum die

<sup>&</sup>lt;sup>8</sup>) Vgl. Diskussion zur Ableitung der Struktur **36** (Schema 3) in [3].

zu den Äthersauerstoffatomen geminale Methylgruppe als s bei 1,41 ppm erscheint, die Methylgruppen des Isopropylrestes als d bei 1,20 ppm (J = 6,5 Hz) auftreten, und dass für die sechs H-Atome des  $\beta$ , $\gamma$ -ungesättigten Estersystems zusätzlich zu einem s bei 3,58 ppm ein t bei 4,98 ppm (J = 7 Hz) und ein d bei 3,03 ppm (J = 7 Hz) beobachtet werden. Im Hinblick auf die NMR.-Daten der mit **16** strukturanalogen Acetalverbindung **17** sei auf die Angaben des exper. Teils verwiesen.

4.14. Hydroxylacton 18. Die Interpretation der spektralanalytischen Daten weist eindeutig auf das Vorliegen einer Struktur 18 hin. Im <sup>13</sup>C-NMR.-Spektrum erscheinen die Brückenkopfkohlenstoffatome als *s* bei relativ tiefem Feld ( $\delta = 74,2$  bzw. 85,1 ppm). Für die übrigen C-Atome des Lactonringes werden je ein *d* bei 120,6 und 149,6 ppm sowie ein *s* bei 164,9 ppm beobachtet.

4.15.  $\alpha,\beta$ -Ungesättigter  $\gamma$ -Ketoester **20** und Furanverbindung **21** (s. Schema 2). Die Struktur der Produkte wurde aus dem Vergleich der Spektraldaten mit denjenigen des  $\alpha,\beta$ -ungesättigten 1,4-Diketons **41** [3] (s. Schema 3) bzw. der Furanverbindung **42** [3] [9] bestimmt.

5. Diskussion. – Ein wesentlicher Befund der vorliegenden Arbeit ist der Nachweis, dass sich das Produktenbild der Triplettanregung des  $\alpha,\beta$ -ungesättigten  $\gamma,\delta$ -Epoxyesters (E)-2 stark von demjenigen der Singulettanregung unterscheidet (vgl. Tabellen 1 und 2). So treten bei der Sensibilisierung mit Aceton bzw. Acetophenon ( $\lambda \ge 280$  nm) die aus der Photolyse mit Licht von  $\lambda = 254$  nm erhaltenen Produkte 6–14 (s. Schema 1) nicht auf, deren Bildung unter Photospaltung der C,C-Oxiranbindung (s. u.) erfolgt. Statt dessen fallen nun neben dem (Z)-Isomer von 2 als Folgeprodukte der triplett-induzierten Spaltung der C( $\gamma$ ),O-Epoxid-bindung die Isomeren (E/Z)-3, (E/Z)-4, 5 und 19 an (vgl. Schema 4 und Tabelle 2).

Dieses Ergebnis ist im Hinblick auf die Photochemie des (E)-2 entsprechenden (E)-5, 6-Epoxy-5, 6-dihydro- $\beta$ -jonons (1) [3] von Bedeutung, welches unter  ${}^{1}n,\pi^{*}$ -Anregung  $(\lambda \ge 347 \text{ nm})$  neben der (E/Z)-Isomerisierung<sup>9</sup>) ausschliesslich unter  $C(\gamma)$ ,O-Spaltung zu einer Zwischenstufe **a** reagiert, die sich zu den (E/Z)-3, (E/Z)-4



<sup>9</sup>) Im Unterschied zu (Z)-2 erwies sich (Z)-1 als thermo- und säurelabil und konnte nicht isoliert werden. Bei der Aufarbeitung isomerisierte sich (Z)-1 stets zum Furan 42 (s. Schema 3); bzgl. des Reaktionsmechanismus s. [10].

und 5 entsprechenden Produkten (E/Z)-44, (E/Z)-45 und 43<sup>10</sup>) stabilisiert (s. Schema 4; zum Ablauf dieser Reaktionen vgl. Diskussion in [3]).

Im Unterschied zur Triplettsensibilisierung führt die Singulettanregung  $(\lambda = 254 \text{ nm}) \text{ von } (E)$ -2 zu einem äusserst komplexen Produktengemisch (s. *Tabelle 1* und *Schema 1*). Dieses enthält neben (Z)-2 und den Folgeprodukten der C( $\gamma$ ),O-Bindungsspaltung (3–5) in überwiegendem Masse die Isomeren 6–17<sup>11</sup>), deren Bildung unter Spaltung der C,C-Oxiranbindung erfolgt. Unter diesen Verbindungen entsprechen die Enoläther (E/Z)-6 bzw. 7 (s. *Schemata 1* und 5) dem Produkt einer lichtinduzierten, homosigmatropen 1,3<sup>12</sup>)- bzw. 1,5-Umlagerung<sup>13</sup>)<sup>14</sup>) von (E/Z)-2.



<sup>&</sup>lt;sup>10</sup>) Das zu 19 analoge Epimer des Dihydrofurans 43 konnte nicht nachgewiesen werden [3]. Es sei in diesem Zusammenhange erwähnt, dass das (E)-1 entsprechende Epoxydien ((E)-5, 6-Epoxy-5, 6dihydro-β-jonyliden) unter Aceton-Sensibilisierung zu den beiden epimeren Dihydrofuranverbindungen 25 und 26 (s. Schema 2) reagiert [7].

- <sup>11</sup>) Der Diketoester 15 ist das Hydrolyseprodukt von 16 bzw. 17 (vgl. exper. Teil) wie auch vermutlich der Zwischenstufe b (s. Schema 5); bei der Photolyse von (E)-2 in Acetonitril-Wasser 3 : 1 fällt 15 zu 85% an.
- <sup>12</sup>) Für die Photoisomerisierung  $46 \rightarrow 47$  (s. Schema 6) wurde als Zwischenstufe der nicht gefasste Enoläther 48 postuliert [11]. Er stellt das Produkt einer zu (E/Z)-2  $\rightarrow (E/Z)$ -6 analogen Umlagerung dar.



- <sup>13</sup>) Nachbestrahlungsversuchen zufolge (s.u.) ist 7 offenbar nicht das Produkt einer Photoenolisierung von (Z)-6.
- <sup>14</sup>) Vgl. die im Schema 6 (s. Fussnote 12) aufgeführten Photoisomerisierungen 49 → 50 [4] und 51 → 52 [12] wie auch die lichtinduzierte Umwandlung von (E)-1 zum Isomer 29 [3] (s. Schema 2).

Die Bildung der Verbindungen 13, 16 und 17 ist auf das intermediäre Auftreten eines Ketonium-ylids **b** (s. Schema 5) zurückzuführen, das ein Primärprodukt der aus einem Singulettzustand von (E)-2 erfolgenden Photospaltung der C, C-Epoxidbindung darstellt. Die Ausbildung dieser Ylid-Zwischenstufe ist in polaren Lösungsmitteln begünstigt (s. die Produktenverteilungen in *Tabelle 1*)<sup>15</sup>). Bei der Anregung mit Licht von  $\lambda = 254$  nm reagiert **b** zum Vinylcarben **c**, das sich unter 1,2-Wasserstoffverschiebung zur Allenverbindung 11 bzw. durch Ringschluss zum Cyclopropenprodukt 12 isomerisiert<sup>16</sup>)<sup>17</sup>). Zudem tritt in Acetonitril zu 23% die Dihydrofuranverbindung 13 (s. Schemata 1 und 5) auf, welche als Cyclisierungsprodukt der Zwischenstufe **b** (Ringschluss zwischen C( $\alpha$ ) und C( $\delta$ )) aufgefasst werden kann<sup>18</sup>). Schliesslich gelang es bei der Photolyse von (E)-2 ( $\lambda = 254$  nm) in 2-Propanol bzw. Methanol das Ylid **b** durch Lösungsmitteladdition in Form der Acetale 16 (46%) bzw. 17 (68%) (s. Schemata 1 und 5) nachzuweisen.



<sup>&</sup>lt;sup>15</sup>) Das Produktenverhältnis von C,C-versus C(γ),O-Bindungsspaltung beträgt in Pentan ca. 1,5 : 1 und in Acetonitril 3 : 1.

1842

<sup>&</sup>lt;sup>16</sup>) Zur Photofragmentierung von Ketonium-yliden s. [13].

<sup>&</sup>lt;sup>17</sup>) Vgl. auch die Photoisomerisierung von (E)-1 zu 34 und 36 (Schema 3) [3].

<sup>&</sup>lt;sup>18</sup>) Die Umwandlung (E)-2 → 13 findet eine Parallele in der Photoisomerisierung des γ,δ-Epoxydienons 53 zum Dihydrofuran 39 (17%; Lösungsmittel: wässeriges Acetonitril [8]) (s. Schema 6 in Fussnote 12); wurde hingegen (E)-2 in wässerigem Acetonitril bestrahlt, so fiel als einziges Produkt der Diketoester 15 (85%; s. Schema 1) an. Der Typus der Photoisomerisierung (E)-2 → 13 wurde in der Reihe α,β-ungesättigter γ,δ-Epoxycarbonylverbindungen sonst nicht beobachtet (vgl. Diskussion in [3]). – Beim Bestrahlen mit Licht von λ = 254 nm erfuhr 13 Isomerisierung zum Ringverengungsprodukt 14 (vgl. Kap. 2.7.).

Diese Versuche ergänzend wurde gezeigt, dass sich die Enoläther (E/Z)-6 bei der Bestrahlung mit Licht von  $\lambda = 254$  nm unter Ringverengung (7-Ring  $\rightarrow$  5-Ring) isomerisieren, wobei diese Umwandlung unter Spaltung der C( $\gamma$ ),O-Bindung, der Ausbildung einer Carbonylgruppe an C( $\delta$ ) und unter Ringschluss zwischen C( $\epsilon$ ) und C( $\gamma$ ) erfolgt<sup>19</sup>). Die *cis*-Doppelbindungskonfiguration aufweisenden Ester (Z)-8 und 9 wandeln sich unter Photoenolisierung ( $\gamma$ -H-Abstraktion) zu den homokonjugierten Ketoestern (E/Z)-10 um. Schliesslich sei noch betont, dass bei der Photolyse des Enoläthers (Z)-6 weder eine (Z/E)-Isomerisierung noch eine Photoenolisierung unter Ausbildung von 7 (zur Bildung von 7 s. oben) beobachtet werden konnte.

Die Diskussion abschliessend sei der Befund hervorgehoben, dass  $\alpha,\beta$ -ungesättigte  $\gamma,\delta$ -Epoxycarbonylverbindungen aus dem  $T_1$ -Zustand  $C(\gamma), O$ -Spaltung aber keinen  $C(\gamma), C(\delta)$ -Bindungsbruch erfahren, so dass diese Tatsache gezielt bei der präparativen Photochemie ausgenützt werden kann.

Dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung sowie der Ciba-Geigy AG, Basel, danken wir für die Unterstützung dieser Arbeit.

#### **Experimenteller** Teil

Allgemeine Bemerkungen. Aufarbeiten bedeutet Aufnehmen des Gemisches in Äther, Waschen der organischen Phase mit gesättigter, wässeriger NaCl-Lösung bis zum Neutralpunkt, Trocknen über wasserfreiem MgSO<sub>4</sub>, Filtrieren und Eindampfen im Rotationsverdampfer. – Die Schmelzpunkte (Smp.) wurden auf einem Reichert-Mikroskop mit Kofler-Mikroheiztisch bestimmt und sind nicht korrigiert. -Flüssige Verbindungen wurden im Kugelrohr destilliert; als Siedepunkt (Sdp.) ist die Ofentemp. angegeben. - Für die Dünnschichtchromatographie (DC.) wurden Merck-DC.-Fertigplatten Kieselgel 60 F<sub>254</sub> verwendet. Der Nachweis der Substanzflecken erfolgte unter UV.-Licht (254 nm oder 350 nm) oder durch Einwirken von Joddämpfen bzw. durch Besprühen mit konz. Schwefelsäure und anschliessendes Erhitzen auf ca. 140°. - Die Säulenchromatographie erfolgte, falls nicht näher beschrieben, in Stufensäulen an der 100fachen Menge Kieselgel 60 Merck (SiO<sub>2</sub>), Korngrösse 0,063-0,200 mm, 70-230 mesh ASTM, durch Zugabe von 5% Wasser desaktiviert. Bei Verwendung von Flash-Chromatographiesäulen nach [15] wurde bei einem Überdruck von ca. 0,3 atm an der ca. 10fachen Menge Kieselgel 60 Merck, Korngrösse 0,040-0,063 mm, 230-400 mesh ASTM, chromatographiert. Die Lösungsmittelgemische sind jeweils im Text vermerkt. - Für die Gas-Chromatographie (GC.) wurden die Varian-Geräte A 90-P und 90-P3 (Wärmeleitfähigkeitsdetektor, Filamentstrom 150 mA) verwendet. Der He-Strom betrug 140-160 ml/min. Es kamen Metallsäulen (10' × 3,8") mit folgenden Füllungen zum Einsatz: QF-1-Säule: Chromosorb W (60/80) AW-DMCS mit 11% Fluorosilicon QF-1; SE-30-Säule: Chromosorb W (80/100) AW-DMCS mit 5% Silicongummi SE-30 (Methyl); OV-17-Säule: Chromosorb G (80/100) AW-DMCS mit 5% Phenylmethylsilicon (50% Phenyl). - Die Ultraviolett-Spektren (UV.) wurden mit einem Perkin-Elmer-Spektrophotometer (Modell 402) aufgenommen. Die  $\lambda_{max}$ -Werte sind in nm angegeben und die  $\epsilon$ -Werte in Klammern beigefügt (S = Schulter). Als Lösungsmittel wurde, falls nicht besonders vermerkt, Pentan verwendet. - Die Infrarot-Spektren (IR.) wurden als ca. 5proz. Lösungen in CCl<sub>4</sub> mit einem Perkin-Elmer-Spektrophotometer (Modell 257 bzw. 297) aufgenommen. Die Lage der Absorptionsbanden ist in Wellenzahlen (cm<sup>-1</sup>) angegeben; die Signale sind charakterisiert als: s = stark, m = mittel, w = schwach, S = Schulter, br. = breit. – Die <sup>1</sup>H-NMR.-

 <sup>&</sup>lt;sup>19</sup>) Vgl. auch 48 → 47 [11] im Schema 6 (s. Fussnote 12) bzw. die lichtinduzierte Umwandlung des 2-Acyldihydropyrans 54 (s. Schema 7) zum 1,2-Diacylcyclobutan 55 [14] (Ringverengung 6-Ring → 4-Ring).

Spektren wurden in CCl<sub>4</sub> (Ausnahmen sind im Text erwähnt) mit einem Varian-HA-100(100 MHz)-Gerät gemessen. Die chemischen Verschiebungen sind in  $\delta$ -Werten (ppm) bzgl. Tetramethylsilan (TMS) als internem Standard (= 0 ppm) angegeben. Abkürzungen: s = Singulett, d = Dublett, t = Triplett, qa = Quadruplett, m = Multiplett, br. = breit, J = Kopplungskonstante in Hz, w<sub>1/2</sub> = Signalbreite in Hzauf halber Signalhöhe. Die durch elektronische Integration bestimmte H-Anzahl stimmt mit den getroffenen Zuordnungen überein. Die Signalzuordnungen wurden, sofern dies zur Interpretation notwendig und messtechnisch durchführbar war, durch selektives Entkoppeln verifiziert. Bei Alkoholen wurden die Hydroxylwasserstoffatome durch Austausch mit D<sub>2</sub>O identifiziert. – Die <sup>13</sup>C-NMR.-Spektren wurden mit einem Varian-XL-100(25 MHz)-Gerät in CDCl<sub>3</sub> aufgenommen. Die Linienfrequenzen sind den <sup>1</sup>H-breitband-entkoppelten Spektren entnommen; die Multiplizität der Signale folgt aus den <sup>1</sup>H-off-resonance-entkoppelten Spektren. Die chemischen Verschiebungen sind in  $\delta$ -Werten bzgl. TMS als internem Standard (= 0 ppm) angegeben. Bzgl. Abkürzungen s. <sup>1</sup>H-NMR.-Spektren. – Die Massen-Spektren (MS.) wurden auf einem Spektrographen Hitachi-Perkin-Elmer RMU-6M aufgenommen. Den Massenpiken (m/z) ist in Klammern die Intensität in % (bezogen auf den als 100%) angenommenen Basispik) beigefügt. In der Regel sind keine Pike aufgeführt, deren Intensität kleiner als 10% ist. - Die Bestrahlungen wurden unter Argon durchgeführt. Als Lichtquellen kamen zur Anwendung: Hg-Niederdruckbrenner TNM 15/32 (Lampe A) der Quarzlampen GmbH, Hanau, oder 125 W Hg-Mítteldruckbrenner HPK (Lampe B) von Philips. Es wurde mit folgenden Bestrahlungsanordnungen gearbeitet: Anordnung I: die Lampe A wurde in einem wassergekühlten (ca. 10°) Lampenschacht aus Quarz zentral in die Photolyselösung getaucht, die intern mit Hilfe eines Magnetkerns gerührt wurde. Anordnung II: Anordnung analog zu I, Lampe B, Pyrex-Glas. Anordnung III: die Lösungen wurden in Reagenzgläsern (Quarz bzw. Pyrex) auf einem Drehteller in äquidistanter Anordnung zur Lichtquelle unter internem Rühren mit Magnetkernen bestrahlt. Anordnung IV: die Lösungen wurden im <sup>1</sup>H-NMR.-Messrohr (Quarz, 100proz. UV.-Transmission bei  $\lambda \ge 248$  nm) mit 2 Lampen A unter Luftkühlung (Gebläse) bestrahlt. Anordnung V: die Proben wurden im <sup>1</sup>H-NMR.-Messrohr (Pyrex, 100proz. UV.-Transmission bei  $\lambda \ge 300$  nm) bestrahlt, welche auf dem Kühlmantel der Lichtquelle B aufgeklebt waren. Bei der <sup>1</sup>H-NMR.-spektroskopischen Kontrolle der Bestrahlungen kam ein Varian T-60 NMR.-Spektrometer (60 MHz) zur Anwendung. – Die Produktausbeuten sind in % bzgl. umgesetztem Reaktant angegeben.

1. Herstellung von (E)-2. – Zu 28,8 g (0,15 mol)  $\beta$ -Jonon in 150 ml Methanol wurde unter starkem Rühren bei – 15° langsam eine Hypochloritlösung aus 96 g KOH in 250 ml H<sub>2</sub>O, 54 g Cl<sub>2</sub>-Gas (bei 0° eingeleitet) sowie 30 ml 30proz. wässerige KOH-Lösung getropft. Es wurde auf 20° erwärmt und über Nacht stehen gelassen. Nach dem Abdampfen von ca. 50% des Metahnols wurde mit Äther ausgeschüttelt. Die mit 2N HCl angesäuerte wässerige Phase wurde 2mal mit Äther extrahiert, der Säureauszug mit 2N NaOH neutral gewaschen und eingedampft. Das kristalline Rohprodukt (26 g, Rohausbeute 89%) wurde in Äthanol umkristallisiert und mit 300 ml Diazomethanlösung in Äther verestert: 83% (E)-3-(2',6',6'-Trimethylcyclohex-1'-en-1'-yl)acrylsäure-methylester. Zur Vorlage von 20,8 g (0,10 mol) des Esters in 600 ml CH<sub>2</sub>Cl<sub>2</sub>/0,5M NaHCO<sub>3</sub>-Lösung 2 : 1 wurde die Lösung von 20,1 g (0,105 mol) 90proz. m-Chlorperbenzoesäure in 250 ml CH<sub>2</sub>Cl<sub>2</sub> getropft. Das Reaktionsgut wurde 2 Std. bei 0°, dann über Nacht bei RT. gerührt und schliesslich in CH<sub>2</sub>Cl<sub>2</sub> aufgearbeitet. Die Chromatographie des Rohproduktes in Hexan/Cyclohexan/Äther 5:1:1 ergab 19,3 g (89%) (E)-3-(1',6'-Epoxy-2',2',6'-trimethylcyclohexyl) acrylsäuremethylester ((E)-2)[6], Sdp. 81-82°/0,5 Torr. – UV. (0,2103 mg in 10 ml); 221 (11 500). UV. (5,8 mg in 5 ml): Endabsorption bis 290. - IR.: 3000 m S, 2965 s S, 2950 s, 2935 s S, 2910 m S, 2875 m, 2850 m S, 1725 s, 1655 m, 1460 m, 1450 m S, 1435 m, 1380 m, 1365 m, 1305 s, 1280 m, 1260 s, 1240 m, 1190 m, 1165 s, 1080 w, 1060 w, 1045 m, 1040 m S, 1015 w, 985 m, 950 w, 935 w, 900 m, 890 m, 860 m. - <sup>13</sup>C-NMR.: 20,6, 25,8 (3 qa, 2 qa überlagert bei 25,8, 2  $H_3C-C(2')$ ,  $H_3C-C(6')$ ); 51,2 (qa, COOCH<sub>3</sub>); 17,0, 29,8, 35,6 (3 t); 123,7, 144,2 (2 d, C(2), C(3)); 33,4 (s, C(2')); 65,4, 70,3 (2 s, C(1'), C(6')); 165,9 (s, COOCH<sub>3</sub>).  $-MS.: 224 (M^+, C_{13}H_{20}O_3, 7), 209 (5), 139 (100), 107 (32), 95 (15), 93 (33), 91 (23), 81 (12), 79 (26),$ 77 (18), 67 (14), 59 (13), 55 (18), 53 (17), 43 (52), 41 (40).

C<sub>13</sub>H<sub>20</sub>O<sub>3</sub> (224,29) Ber. C 69,61 H 8,99% Gef. C 69,66 H 9,07%

### **2.** Bestrahlungsversuche. – 2.1. Photolysen von (E)-2 mit Licht von $\lambda = 254$ nm.

2.1.1. In Pentan. a) Die Lösung von 3,36 g (15,0 mmol) (E)-2 in 320 ml Pentan wurde 18 Std. in der Anrodnung I bestrahlt (Umsatz ca. 75%). Die Säulenchromatographie des Rohproduktes in Hexan/Äther/Cyclohexan 4 : 1 : 1 und dann in Hexan/Äther 1 : 1 ergab Mischfraktionen, die <sup>1</sup>H-NMR.-spektroskopisch und im GC. (SE-30, 175°; OV-17, 190°) analysiert wurden. Produktverteilung: 10%

(Z)-2, 5% (E)-3, 1% (Z)-3, 3% (E)-4, <1% (Z)-4, 17% 5, 3% (E)-6, <1% (Z)-6, 1% 7, 12% (E)-8, 5% Gemisch von (Z)-8 und 9, 4% 11, 13% 12, <1% 13 und <1% 15. Die Isolierung der Photoprodukte erfolgte gas-chromatographisch. – b) Die Lösung von 3,59 g (16,0 mmol) (E)-2 in 330 ml Pentan wurde 50 Std. in der Anordnung I bestrahlt (Umsatz ca. 90%); Produktverteilung: 2% (Z)-2, 7% (E)-3, 3% (Z)-3, 4% (E)-4, 1% (Z)-4, 13% 5, 4% 7, 9% (E)-8, 5% (Z)-8 im Gemisch mit 9, 2% (E/Z)-10, 4% 11, 12% 12, <1% 13, 7% 15.

2.1.2. In Diäthyläther. Die Lösung von 2,70 g (12,0 mmol) (E)-2 in 280 ml Diäthyläther (Uvasol, Merck), wurde 15 Std. in der Anordnung I bestrahlt (Umsatz ca. 85%); Produktverteilung: 10% (Z)-2, 4% (E)-3, 1% (Z)-3, 1% (E)-4, <1% (Z)-4, 12% 5, 6% (E)-6, <1% (Z)-6, 4% 7, 14% (E)-8, 9% (Z)-8 im Gemisch mit 9, 2% (E/Z)-10, 3% 11, 6% 12, 5% 13, 1% 14 mit <1% 15.

2.1.3. In Acetonitril. a) Die Lösung von 3,47 g (15,5 mmol) (E)-2 in 350 ml Acetonitril wurde 10 Std. in der Anordnung I bestrahlt (Umsatz ca. 75%). Produktverteilung: 16% (Z)-2, 4% (E)-3, 2% (Z)-3, 1% (E)-4, <1% (Z)-4, 5% 5, 1% (E)-6, <1% (Z)-6, 1% 7, 2% (E)-8, 1% (Z)-8, 4% 11, 8% 12, 23% 13, 4% 14, 8% 15. - b) Die Lösung von 3,36 g (15,0 mmol) (E)-2 in 330 ml Acetonitril wurde 20 Std. in der Anordnung I bestrahlt (Umsatz ca. 90%); Produktverteilung: 4% (Z)-2, 7% (E)-3, 2% (Z)-3, <1% (E/Z)-4, 7% 5, 8% 7, <1% 9, <1% (E/Z)-10, 4% 11, 8% 12, 23% 13, 5% 14, 11% 15.

(Z)-3-(1',6'-Epoxy-2',2',6'-trimethylcyclohexyl)acrylsäure-methylester ((Z)-2): GC.-isoliert. – UV. (0,3136 mg in 10 ml): 203 (8200). UV. (4,1 mg in 5 ml): Endabsorption bis 310. – IR.: 3030 w S, 2990 m S, 2970 s S, 2950 s, 2870 m, 1730 s, 1640 m, 1475 w, 1460 m, 1440 m, 1405 m, 1385 m, 1375 m, 1360 m, 1285 w, 1260 w, 1230 m, 1195 s, 1175 s, 1145 w, 1110 m, 1075 w, 1060 w, 1040 w, 1000 m, 950 m, 935 w, 890 w, 870 w. – <sup>1</sup>H-NMR. (Konformerenteinheit ca. 90%, s. auch <sup>13</sup>C-NMR.): 0,99, 1,00, 1,13 (3 s, 2 H<sub>3</sub>C-C(2'), H<sub>3</sub>C-C(6')); 1,1–1,9 (m, 6 H); 3,65 (s, COOCH<sub>3</sub>); 5,99 (*AB*-System,  $J = 11, 5, \delta_A = 6,09, H-C(3), \delta_B = 5,88, H-C(2)). – <sup>13</sup>C-NMR. (bei RT. z. T. stark verbreiterte Signale; daher Angabe des Koaleszenzspektrums (T = 80°)): 22,3, 25,8, 26,3 (3 qa, 2 H<sub>3</sub>C-C(2'), H<sub>3</sub>C-C(6')); 50,9 (qa, COOCH<sub>3</sub>); 17,4, 30,8, 36,5 (3 t); 122,1, 141,9 (2 d, C(2), C(3)); 34,6 (s, C(2')); 66,7, 70,0 (2 s, C(1'), C(6')); 165,8 (s, COOCH<sub>3</sub>). – MS.: 224 (M<sup>+</sup>, C<sub>13</sub>H<sub>20</sub>O<sub>3</sub>, 9), 209 (4), 140 (10), 139 (100), 123 (15), 107 (10), 43 (15), 41 (8).$ 

#### C<sub>13</sub>H<sub>20</sub>O<sub>3</sub> (224,29) Ber. C 69,61 H 8,99% Gef. C 69,48 H 8,85%

(E)-3-(1',2',2'-Trimethyl-6'-oxo-1'-cyclohexyl)acrylsäure-methylester ((E)-3): GC.-isoliert. – UV. (0,167 mg in 10 ml): 205 (12000), 227 S (7000). UV. (1,6 mg in 5 ml): 284 S (340), 293 (380), 300 (370), 310 S (300), 320 (150), Endabsorption bis 340. – IR.: 3000 m S, 2965 m S, 2955 s, 2920 m, 2880 m, 1725 s, 1715 s, 1640 m, 1460 m, 1435 m, 1390 w, 1375 m, 1370 m, 1345 w, 1320 m, 1300 s, 1270 s, 1255 m S, 1195 s, 1170 s, 1075 w, 1050 w, 1035 w, 1015 m, 985 w, 940 w, 910 w, 875 w, 845 w. – <sup>1</sup>H-NMR.: 0,98, 0,99, 1,14 (3 s, H<sub>3</sub>C-C(1'), 2 H<sub>3</sub>C-C(2')); 1,3–2,1 (m, 2 H-C(3'), 2 H-C(4')); 2,1–2,7 (m, 2 H-C(5')); 3,67 (s, COOCH<sub>3</sub>); 6,50 (*AB*-System,  $J = 16, \delta_A = 7,32, H-C(3), \delta_B = 5,67, H-C(2)). - ^{13}C-NMR.: 15,7, 24,0, 25,0 (3 qa, H<sub>3</sub>C-C(1'), 2 H<sub>3</sub>C-C(2')); 51,6 (qa, COOCH<sub>3</sub>); 22,0, 35,7, 37,9 (3 t); 121,9, 149,6 (2 d, C(2), C(3)); 41,0 (s, C(2')); 58,7 (s, C(1')); 166,5 (s, COOCH<sub>3</sub>); 211,3 (s, C(6')). – MS.: 224 (<math>M^+$ , C<sub>13</sub>H<sub>20</sub>O<sub>3</sub>, 69), 209 (10), 196 (10), 193 (26), 181 (13), 177 (11), 168 (13), 165 (44), 155 (16), 149 (16), 141 (31), 137 (21), 136 (19), 125 (27), 124 (52), 123 (36), 121 (16), 114 (44), 109 (42), 96 (40), 95 (74), 93 (29), 91 (15), 83 (20), 81 (27), 79 (26), 77 (19), 69 (100), 67 (29), 59 (18), 55 (58), 53 (34), 43 (34), 41 (77).

# C<sub>13</sub>H<sub>20</sub>O<sub>3</sub> (224,29) Ber. C 69,61 H 8,99% Gef. C 69,65 H 9,02%

(Z)-3-(1', 2', 2'-Trimethyl-6'-oxo-1'-cyclohexyl)acrylsäure-methylester ((Z)-3): GC.-isoliert. – UV. (0,4244 mg in 20 ml): 204 (9300), 240 S (1700). UV. (2,9 mg in 5 ml): Endabsorption bis 320. – IR.: 3050 w, 2980 s, 2950 s, 2920 m, 2880 m, 2860 w S, 1740 s, 1720 s, 1630 m, 1460 m, 1450 m, 1435 s, 1410 w, 1390 m, 1370 m, 1310 m, 1275 m, 1245 m, 1195 s, 1180 s, 1165 m, 1095 w, 1070 w, 1015 w, 1005 w, 925 w. – <sup>1</sup>H-NMR.: 0,84, 1,04, 1,14 (3 s, H<sub>3</sub>C-C(1'), 2 H<sub>3</sub>C-C(2')); 1,2–2,0 (m, 2 H-C(3'), 2 H-C(4')); 2,0–2,7 (m, 2 H-C(5')); 3,58 (s, COOCH<sub>3</sub>); 6,12 (*AB*-System,  $J = 12,5, \delta_A = 6,45$ , H-C(3),  $\delta_B = 5,79$ , H-C(2)). – <sup>13</sup>C-NMR.: 15,8, 22,5, 24,3 (3 qa, H<sub>3</sub>C-C(1'), 2 H<sub>3</sub>C-C(2')); 51,0 (qa, COOCH<sub>3</sub>); 20,9 (s, C(6')). – MS.: 224 ( $M^+$ , C<sub>13</sub>H<sub>20</sub>O<sub>3</sub>, 51); gleiches Fragmentierungsverhalten wie bei (*E*)-**3**.

C<sub>13</sub>H<sub>20</sub>O<sub>3</sub> (224,29) Ber. C 69,61 H 8,99% Gef. C 69,62 H 8,96%

(E)-3-(1'-Acetyl-2', 2'-dimethylcyclopentyl)acrylsäure-methylester ((E)-4): GC.-isoliert. – UV. (0,233 mg in 10 ml): 226,5 (9100). UV. (2,8 mg in 5 ml): 292 (190), Endabsorption bis 340. – IR.: 2955 m, 2905 m S, 2870 m, 1725 s, 1705 s, 1645 m, 1465 m S, 1460 m, 1435 m, 1385 w, 1370 m, 1350 m, 1315 s, 1300 s, 1275 m, 1230 m, 1195 s, 1170 s, 1105 w, 1025 w, 1015 w, 995 w. – <sup>1</sup>H-NMR.: 1,02, 1,04 (2 s, 2 H<sub>3</sub>C-C(2')); 1,4–2,4 (m, 6 H); 2,08 (s, CH<sub>3</sub>CO); 3,70 (s, COOCH<sub>3</sub>); 6,45 (*AB*-System,  $J = 16, \delta_A = 7,17, H-C(3), \delta_B = 5,72, H-C(2)). – <sup>13</sup>C-NMR.: 24,7, 25,0, 30,1 (3 qa, 2 H<sub>3</sub>C-C(2'));$ CH<sub>3</sub>CO); 51,6 (qa, COOCH<sub>3</sub>); 19,7, 31,0, 39,5 (3 t); 121,1, 149,4 (2 d, C(2), C(3)); 46,4 C(2')); $66,8 (s, C(1')); 166,4 (s, COOCH<sub>3</sub>); 208,3 (s, CH<sub>3</sub>CO). – MS.: 224 (<math>M^+$ , C<sub>13</sub>H<sub>20</sub>O<sub>3</sub>, noch sichtbar), *182* (100), 167 (56), 155 (11), 135 (68), 123 (66), 107 (11), 96 (17), 95 (13), 93 (11), 81 (11), 79 (14), 55 (21), 43 (73), 41 (20).

### C<sub>13</sub>H<sub>20</sub>O<sub>3</sub> (224,29) Ber. C 69,61 H 8,99% Gef. C 69,67 H 9,05%

(Z)-3-(1'-Acetyl-2', 2'-dimethylcyclopentyl)acrylsäure-methylester ((Z)-4): GC.-isoliert. – UV. (0,2812 mg in 10 ml): 206,5 (8300), 240 S (2500). UV. (1,5 mg in 10 ml): Endabsorption bis 325. – IR.: 3045 w S, 2960 s, 2910 m S, 2875 m, 1730 s, 1705 s, 1630 m, 1465 m, 1460 m S, 1440 s, 1405 m, 1385 m, 1370 m, 1350 s, 1240 m, 1195 s, 1175 s, 1095 w, 1065 w, 1040 w, 1020 w, 1005 w. – <sup>1</sup>H-NMR.: 0,94, 1,06 (2 s, 2 H<sub>3</sub>C-C(2')); 1,4–2,0 (m, 5 H); 2,05 (s, CH<sub>3</sub>CO); 2,6–2,9 (m, 1 H); 3,63 (s, COOCH<sub>3</sub>); 6,16 (AB-System, J = 12,  $\delta_A = 6,50$ , H–C(3),  $\delta_B = 5,82$ , H–C(2)). – <sup>13</sup>C-NMR.: 24,3, 25,1, 30,1 (3 qa, 2 H<sub>3</sub>C-C(2')); 66,0 (s, C(1')); 166,0 (s, COOCH<sub>3</sub>); 20,4, 34,8, 39,3 (3 t); 121,1, 150,1 (2 d, C(2), C(3)); 45,8 (s, C(2')); 66,0 (s, C(1')); 166,0 (s, COOCH<sub>3</sub>); 207,6 (s, CH<sub>3</sub>CO). – MS.: 224 (M<sup>+</sup>, C<sub>13</sub>H<sub>20</sub>O<sub>3</sub>, noch sichtbar); gleiches Fragmentierungsverhalten wie bei (E)-4.

 $(6 \mathbb{R}^*, 8\mathbb{S}^*)$ -2,2,6-Trimethyl-7-oxabicyclo[4,3,0]non-9-en-8-carbonsäure-methylester (**5**): Sdp. 70-75°/ 0,008 Torr. – UV. (0,3386 mg in 10 ml): 203 (6500), 220 S (2900). UV. (1,0 mg in 10 ml): Endabsorption bis 260. – IR.: 2995 m, 2960 m, 2940 s, 2915 m S, 2890 m S, 2865 m, 2845 m, 1765 s, 1735 m, 1650 w, 1460 m, 1435 m, 1385 w, 1370 m, 1365 w, 1340 w, 1320 w, 1290 w, 1265 m, 1240 m, 1210 m, 1195 s, 1180 m, 1135 s, 1100 s, 1040 m, 1020 m, 1005 m, 985 w, 975 w, 960 w, 940 w, 905 w, 875 w, 865 m, 850 w, 835 w. – <sup>1</sup>H-NMR.: 1,12, 1,18, 1,48 (3 s, 2 H<sub>3</sub>C-C(2), H<sub>3</sub>C-C(6)); 1,1–2,1 (m, 3 CH<sub>2</sub>); 3,67 (s, COOCH<sub>3</sub>); 4,93, 5,28 (2 d, J = 2, H–C(8), H–C(9)). – <sup>13</sup>C-NMR.: 25,5, 27,2, 30,4 (3 qa, 2 H<sub>3</sub>C-C(2), H<sub>3</sub>C-C(6)); 51,7 (qa, COOCH<sub>3</sub>); 20,4, 41,4, 41,6 (3 t); 81,2 (d, C(8)); 114,3 (d, C(9)); 34,9 (s, C(2)); 89,5 (s, C(6)); 155,4 (s, C(1)); 172,1 (s, COOCH<sub>3</sub>). – MS.: 224 ( $M^+$ , C<sub>13</sub>H<sub>20</sub>O<sub>3</sub>, noch sichtbar), 209 (2), 182 (7), 166 (11), 165 (100), 109 (15), 107 (10), 95 (53), 69 (10), 55 (13), 43 (22), 41 (12).

### C<sub>13</sub>H<sub>20</sub>O<sub>3</sub> (224,29) Ber. C 69,61 H 8,99% Gef. C 69,63 H 8,91%

(E)-3-(3', 3', 7'-Trimethyl-1'-oxa-6'-cyclohepten-2'-yl)acrylsäure-methylester ((E)-6): GC.-isoliert. -UV. (0,1764 mg in 10 ml): 207 (18800). UV. (4,15 mg in 2 ml): Endabsorption bis 320. - IR.: 3050 w S, 3025 w S, 2990 w S, 2960 m, 2925 m, 2875 w, 2845 w, 1725 s, 1680 m, 1665 m, 1465 w, 1445 w, 1435 m, 1390 w, 1380 m, 1365 w, 1340 w, 1315 m S, 1300 s, 1275 m, 1260 m, 1235 w, 1200 m, 1195 m, 1165 s. 1160 s, 1100 m, 1085 w, 1040 m, 1030 m, 1010 w, 990 w, 980 m. - <sup>1</sup>H-NMR.: 0,90, 1,02 (2 s, 2  $H_3C-C(3')$ ; 1,74 (d-artiges m,  $w_{1/2} = 4$ , Kopplung mit H-C(6'), J = 1,  $H_3C-C(7')$ ); 1,1-2,4 (m, 2 H-C(4'), 2 H-C(5')); 3,68  $(s, \text{COOCH}_3);$  4,37 (X-Teil eines ABX-Systems,  $J_1 = 5, J_2 = 2,$ H-C(2'); 4,40-4,55 (m, H-C(6')); 6,40 (AB-Teil eines ABX-Systems,  $J_{AB} = 16$ ,  $J_{AX} = 5$ ,  $J_{BX} = 2$ ,  $\delta_A = 6.82$ , H-C(3),  $\delta_B = 5.98$ , H-C(2)).  $^{-13}$ C-NMR. (Reinheit ca. 90%; teilweise Zersetzung bei der Aufnahme): 21,1, 23,3, 25,3 (3 qa, 2 H<sub>3</sub>C-C(3'), H<sub>3</sub>C-C(7')); 51,4 (qa, COOCH<sub>3</sub>); 21,7, 40,9 (2 t, C(4'), C(5'); 86,5 (d, C(2')); 104,0 (d, C(6')); 120,9, 145,7 (2 d, C(2), C(3)); 38,3 (s, C(3')); 156,1 (s, C(7')); 166,7 (s, COOCH<sub>3</sub>). - MS.: 224 (M<sup>+</sup>, C<sub>13</sub>H<sub>20</sub>O<sub>3</sub>, 47), 192 (28), 182 (12), 181 (16), 155 (14), 154 (12), 181 (16), 155 (14), 154 (12), 181 (16), 155 (14), 154 (12), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 (16), 181 151 (15), 149 (28), 142 (13), 139 (44), 135 (11), 125 (23), 123 (40), 122 (16), 121 (38), 113 (11), 111 (60), 110 (29), 109 (25), 108 (13), 107 (55), 106 (10), 98 (74), 95 (67), 94 (37), 93 (29), 91 (14), 83 (26), 82 (14), 81 (31), 80 (12), 79 (51), 77 (14), 71 (25), 69 (12), 67 (18), 59 (11), 55 (38), 53 (19), 43 (100), 41 (35).

C<sub>13</sub>H<sub>20</sub>O<sub>3</sub> (224,29) Ber. C 69,61 H 8,99% Gef. C 69,25 H 9,06%

1846

(Z)-3-(3', 3', 7'-Trimethyl-1'-oxa-6'-cyclohepten-2'-yl)acrylsäure-methylester ((Z)-6): GC.-isoliert. – IR.: 3050 w, 3025 w S, 2985 m S, 2965 m, 2960 m S, 2955 m, 2875 m, 2850 m, 1730 s, 1675 m, 1655 m, 1640 w S, 1465 m, 1440 s, 1410 m, 1385 m, 1380 m, 1365 m, 1345 w, 1320 m, 1275 w, 1240 m, 1200 s, 1175 s, 1160 s, 1125 m, 1095 w, 1075 w, 1035 s, 995 m, 950 w, 935 w, 910 w, 880 w, 870 w, 835 w. – <sup>1</sup>H-NMR. (Reinheit ca. 90%): 0,86, 0,96 (2 s, 2 H<sub>3</sub>C-C(3')); 1,68 (m, w<sub>1/2</sub> = 4, H<sub>3</sub>C-C(7')); ca. 1,1-2,4 (m, 2 H-C(4'), 2 H-C(5')); 3,67 (s, COOCH<sub>3</sub>); 4,4-4,6 (m, H-C(6')); 5,58 (d,  $J_{AC} = 9$ , C-Teil eines ABC-Systems, H-C(2')); 5,76 (B-Teil eines ABC-Systems,  $J_{AB} = 11$ , H-C(2)); 5,9-6,2 (A-Teil eines ABC-Systems,  $J_{AB} = 11$ ,  $J_{AC} = 9$ , H-C(3)). – <sup>13</sup>C-NMR: 21,4, 22,9, 25,2 (3 qa, 2 H<sub>3</sub>C-C(3')), H<sub>3</sub>C-C(7')); 51,3 (qa, COOCH<sub>3</sub>); 21,7, 41,1 (2 t); 82,2 (d, C(2')); 104,6 (d, C(6')); 19,6, 145,6 (2 d, C(2), C(3)); 38,9 (s, C(3')); 156,0 (s, C(7')); 166,2 (s, COOCH<sub>3</sub>). – MS.: 224 ( $M^{+}$ , C<sub>13</sub>H<sub>20</sub>O<sub>3</sub>, 45); gleiches Fragmentierungsverhalten wie bei (E)-6.

3-(3', 3', 7'-Trimethyl-1'-oxa-6'-cyclohepten-2'-yliden)propionsäure-methylester (7): GC.-isoliert. – UV. (1,5 mg in 5 ml): Endabsorption bis 260. – 1R.: 3090 w, 3055 w, 3030 w S, 2990 m S, 2970 s, 2955 s, 2925 s, 2880 m, 2865 m S, 2850 m, 1745 s, 1680 s, 1640 m, 1475 m, 1460 m, 1455 m S, 1435 s, 1410 w, 1385 s, 1365 m, 1350 m S, 1340 m, 1320 m, 1305 m, 1270 m, 1250 m, 1215 s, 1195 s, 1170 s, 1150 s, 1110 s, 1090 m, 1060 m, 1035 m, 980 m, 880 w. – <sup>1</sup>H-NMR.: 1,13 (2 s überlagert, 2 H<sub>3</sub>C-C(3')); 1,3–2,0 (m, 2 H-C(4'), 2 H-C(5')); 1,81 (s,  $w_{1/2} = 2$ , H<sub>3</sub>C-C(7')); 2,97 (d, J = 65, 2 H-C(2)); 3,59 (s, COOCH<sub>3</sub>); 4,3–4,5 (t-artiges m, H-C(6')); 5,03 (t, J = 65, H-C(3)). – <sup>13</sup>C-NMR.: 20,8 (qa, H<sub>3</sub>C-C(7')); 27,7 (2 qa überlagert, 2 H<sub>3</sub>C-C(3')); 51,7 (qa, COOCH<sub>3</sub>); 2,2, 30,9, 40,3 (3 t); 103,8, 104,5 (2 d, C(3), C(6')); 39,9 (s, C(3')); 153,5, 163,7 (2 s, C(2'), C(7')); 172,7 (s, COOCH<sub>3</sub>). – MS.: 224 (M<sup>+</sup>, C<sub>13</sub>H<sub>20</sub>O<sub>3</sub>, 35), 192 (19), 181 (21), 168 (25), 167 (47), 165 (24), 149 (35), 139 (14), 135 (29), 121 (39), 109 (19), 108 (25), 107 (88), 95 (38), 93 (38), 81 (21), 79 (29), 69 (13), 59 (11), 55 (31), 53 (18), 43 (100), 41 (35), 39 (17).

#### C<sub>13</sub>H<sub>20</sub>O<sub>3</sub> (224,29) Ber. C 69,61 H 8,99% Gef. C 69,52 H 9,20%

 $(I' \mathbb{R}^*, 5' \mathbb{R}^*, \mathbb{E})^{-3} - (5' - Acetyl - 2', 2' - dimethylcyclopentyl)acrylsäure-methylester ((\mathbb{E})-\mathbb{B}): GC.-isoliert. - UV. (0,1884 mg in 10 ml): 213 (14800). UV. (7,2 mg in 5 ml): Endabsorption bis 330. - IR.: 3000 w S, 2960 s, 2870 m, 1725 s, 1715 s S, 1655 m, 1460 m, 1435 m, 1390 w, 1370 m, 1355 m, 1315 m S, 1310 m, 1270 m, 1220 m, 1190 m, 1175 m S, 1160 m, 1125 w, 1090 w, 1040 w, 1015 w, 990 w. - <sup>1</sup>H-NMR.: 0,89, 1,03 (2 s, 2 H<sub>3</sub>C-C(2')); 2,04 (s, CH<sub>3</sub>CO); 1,4-2,1 (m, 2 H-C(3'), 2 H-C(4')); 2,43 (d × d, t-artig, <math>J_1 = J_2 = 9.5$ , H-C(1')); 2,8-3,1 (m, H-C(5')); 3,66 (s, COOCH<sub>3</sub>); 6,28 (AB-System,  $J_{AB} = 16, \delta_A = 6,75$ , verdoppelt durch Kopplung mit H-C(1'), J = 9.5, H-C(3),  $\delta_B = 5.81$ , H-C(2)). - <sup>13</sup>C-NMR. (Isomerenreinheit ca. 95%); 22,6, 27,4, 29,6 (3 qa, 2 H<sub>3</sub>C-C(2'), CH<sub>3</sub>CO); 51,3 (qa, COOCH<sub>3</sub>); 26,2, 40,8 (2 t); 55,0, 55,7 (2 d); 122,5, 148,2 (2 d, C(2), C(3)); 44,3 (s, C(2')); 166,2 (s, COOCH<sub>3</sub>); 208,8 (s, CH<sub>3</sub>CO). - MS.: 224 (M<sup>+</sup>, C<sub>14</sub>H<sub>20</sub>O<sub>3</sub>, 22), 209 (6), 192 (16), 181 (16), 165 (11), 155 (43), 149 (21), 137 (10), 125 (23), 124 (13), 123 (60), 121 (17), 109 (10), 107 (17), 95 (23), 93 (18), 81 (13), 79 (17), 77 (11), 69 (16), 67 (11), 66 (13), 65 (10), 59 (13), 55 (20), 53 (10), 43 (100), 41 (28).

 $C_{13}H_{20}O_3$  (224,29) Ber. C 69,61 H 8,99% Gef. C 69,27 H 8,96%

 $(I' \mathbb{R}^*, 5' \mathbb{R}^*, Z)$ -3-(5'-Acetyl-2', 2'-dimethylcyclopentyl)acrylsäure-methylester ((Z)-8): GC.-isoliert. – IR.: 3025 w S, 2995 w S, 2955 s, 2905 m S, 2870 m, 1720 s, 1715 s, 1640 m, 1460 m, 1440 m, 1415 m, 1390 w, 1370 m, 1360 m, 1315 w, 1260 w S, 1240 m S, 1210 s, 1195 s, 1175 s, 1115 m, 1005 w. – <sup>1</sup>H-NMR.: 0,91, 1,07 (2 s, 2 H<sub>3</sub>C-C(2')); ca. 1,3-2,4 (m, 2 H-C(3'), 2 H-C(4')); 1,95 (s, CH<sub>3</sub>CO); 3,2-3,5 (m, H-C(5')); 3,62 (s, COOCH<sub>3</sub>); 3,98 (d×d,  $J_1 = 8, J_2 = 10, H-C(1')$ ); 5,83 (AB-System,  $J_{AB} = 12, \delta_A = 5,91$ , verdoppelt durch Kopplung mit H-C(1'),  $J = 10, H-C(3), \delta_B = 5,76, H-C(2)$ ). – MS.: 224 (M<sup>+</sup>, C<sub>13</sub>H<sub>20</sub>O<sub>3</sub>, 25); gleiches Fragmentierungsverhalten wie bei (E)-8.

 $(1' R^*, 5' S^*, Z)$ -3-(5'-Acetyl-2', 2'-dimethylcyclopentyl)acrylsäure-methylester (9): GC.-isoliert. – UV. (0,2502 mg in 10 ml): 212 (11100). UV. (6,1 mg in 5 ml): Endabsorption bis 330. – IR.: 3035 w S, 3000 w S, 2955 s, 2865 m, 1725 s, 1715 s S, 1645 m, 1460 m, 1435 s, 1410 m, 1385 w, 1370 m, 1360 m, 1295 w, 1260 w S, 1245 m, 1210 m, 1190 s, 1175 s, 1060 w, 1035 w, 1005 w S, 995 w, 925 w, 905 w, 885 w, 845 w. –<sup>1</sup>H-NMR.: 0,88, 1,01 (2 s, 2 H<sub>3</sub>C-C(2')); 2,01 (s, CH<sub>3</sub>CO); 1,4–2,1 (m, 2 H–C(3'), 2 H–C(4')); 2,5–2,85 (m, H–C(5')); 3,66 (s, COOCH<sub>3</sub>); 3,78 (d × d, t-artig, J<sub>1</sub> = 9,5, J<sub>2</sub> = 10; überlagert durch s bei 3,66; erscheint in C<sub>6</sub>D<sub>6</sub> als separiertes d × d, t-artig, bei 3,97; H–C(1')); 5,91 (AB-System, J<sub>AB</sub> = 10,5,  $\delta_A$  = 6,01, verdoppelt durch Kopplung mit H–C(1'), J = 10, H–C(3),

 $\delta_B = 5,82, H-C(2)$ ). - <sup>13</sup>C-NMR.: 22,4, 27,5, 28,3 (3 *qa*, 2 H<sub>3</sub>C-C(2'), CH<sub>3</sub>CO); 51,0 (*qa*, COOCH<sub>3</sub>); 25,7, 41,2 (2 *t*); 50,7, 57,9 (2 *d*); 121,2, 149,1 (2 *d*, C(2), C(3)); 45,5 (*s*, C(2')); 166,1 (*s*, COOCH<sub>3</sub>); 209,4 (*s*, CH<sub>3</sub>CO). - MS.: 224 ( $M^+$ , C<sub>13</sub>H<sub>20</sub>O<sub>3</sub>, 27); gleiches Fragmentierungsverhalten wie bei (*E*)-8.

C<sub>13</sub>H<sub>20</sub>O<sub>3</sub> (224,29) Ber. C 69,61 H 8,99% Gef. C 69,52 H 9,04%

(Z)-3-(5'-Acetyl-2', 2'-dimethylcyclopentyliden)propionsäure-methylester ((Z)-10): GC.-isoliert. – UV. (4,8 mg in 5 ml): 285 (64). – IR.: 3000 w S, 2955 s, 2865 m, 1745 s, 1715 s, 1460 m, 1435 m, 1385 w, 1355 m, 1325 m, 1295 m, 1255 m, 1195 m, 1165 s, 1110 w, 1015 w, 990 w, 940 w, 840 w. – <sup>1</sup>H-NMR. (Reinheit ca. 95%): 1,09 (2 s, überlagert, 2 H<sub>3</sub>C-C(2')); 1,4–2,1 (m, 2 H–C(3'), 2 H–C(4')); 2,08 (s, CH<sub>3</sub>CO); 2,81 (d, schwach verbreitert durch homoallylische Kopplung mit H–C(5'), J = 7,5, 2 H–C(2)); 3,4–3,6 (m, überlagert durch s bei 3,62, H–C(5')); 3,62 (s, COOCH<sub>3</sub>); 5,49 (t, verdoppelt,  $J_1 = 7,5$ ,  $J_2 = 2$ , H–C(3)). – <sup>13</sup>C-NMR.: 27,7, 28,3, 29,1 (3 qa, 2 H<sub>3</sub>C–C(2')); 152,6 (s, C(1')); 172,2 (s, COOCH<sub>3</sub>); 208,8 (s, CH<sub>3</sub>CO). – MS.: 224 ( $M^+$ , C<sub>13</sub>H<sub>20</sub>O<sub>3</sub>, 12), 192 (33), 181 (13), 167 (51), 165 (13), 149 (26), 135 (30), 122 (13), 121 (31), 109 (10), 108 (19), 107 (86), 95 (18), 93 (33), 91 (20), 79 (23), 77 (12), 59 (10), 55 (12), 43 (100).

### C<sub>13</sub>H<sub>20</sub>O<sub>3</sub> (224,29) Ber. C 69,61 H 8,99% Gef. C 69,48 H 9,01%

(E)-3-(5'-Acetyl-2', 2'-dimethylcyclopentyliden)propionsäure-methylester ((E)-10): GC.-isoliert. – UV. (0,3464 mg in 10 ml): 203,5 (6200), 246 (580). UV. (4,4 mg in 5 ml): 290 (117), 297 (111), 306 S (88), 217 S (40), Endabsorption bis 350. – IR.: 3000 w S, 2960 s, 2905 m S, 2875 m, 1745 s, 1715 s, 1460 m, 1435 m, 1420 w S, 1385 w, 1365 m, 1355 m, 1320 m, 1300 m, 1255 m, 1235 m, 1195 m, 1165 s, 1125 w, 1095 w, 1035 w, 1015 w, 990 w, 945 w, 880 w, 840 w. – <sup>1</sup>H-NMR. (Reinheit ca. 95%): 1,18 (2 s, überlagert, 2 H<sub>3</sub>C-C(2')); 1,4-2,1 (m, 2 H-C(3'), 2 H-C(4')); 2,12 (s, CH<sub>3</sub>CO); 3,16 (d × d,  $J_1 = 7,5, J_2 = 1,5$  (homoallylische Kopplung mit H-C(5'), 2 H-C(2)); 3,25-3,55 (br. m, H-C(5')); 3,65 (s, COOCH<sub>3</sub>); 5,46 (verdoppettes t,  $J_1 = 7,5, J_2 = 2, H-C(3)$ ). – <sup>13</sup>C-NMR. (Reinheit ca. 95%): 27,5, 27,6, 28,1 (3 qa, 2 H<sub>3</sub>C-C(2'), CH<sub>3</sub>CO); 51,9 (qa, COOCH<sub>3</sub>); 209,4 (s, CH<sub>3</sub>CO). – MS.: 224 ( $M^+$ , C  $_{3}H_{20}O_3$ , 11); gleiches Fragmentierungsverhalten wie bei (Z)-10.

### C<sub>13</sub>H<sub>20</sub>O<sub>3</sub> (224,29) Ber. C 69,61 H 8,99% Gef. C 69,47 H 8,90%

5,5-Dimethyl-9-oxo-2,3-decadiensäure-methylester (11): GC.-isoliert. – UV. (0,1462 mg in 10 ml): 211 (11800). UV. (1,6 mg in 5 ml): Endabsorption bis 310. – IR.: 3025 w S, 2965 m, 2905 m, 2870 m, 2850 w, 1965 m, 1725 s, 1470 m, 1460 m, 1450 m, 1440 m, 1405 m, 1385 w, 1365 m, 1360 m S, 1315 w, 1275 m S, 1265 s, 1225 m S, 1190 m, 1160 s, 1115 w, 1085 w, 1030 m, 995 w, 910 w, 875 m, 840 w. – <sup>1</sup>H-NMR. (Reinheit ca. 95%): 1,08 (2 s, 2 H<sub>3</sub>C-C(5)); 1,2–1,8 (m, 2 H-C(6), 2 H-C(7)); 2,06 (s, 3 H-C(10)); 2,25–2,45 (t-artiges m, 2 H-C(8)); 3,67 (s, COOCH<sub>3</sub>); 5,48 (*AB*-System, J = 6,  $\delta_A = 5,53$ ,  $\delta_B = 5,44$ , H-C(2), H-C(4)). – <sup>13</sup>C-NMR.: 27,4, 27,8, 29,8 (3 qa, 2 H<sub>3</sub>C-C(5), C(10)); 5,18 (qa, COOCH<sub>3</sub>); 19,1, 42,4, 44,0 (3 t); 89,2, 105,1 (2 d, C(2), C(4)); 35,7 (s, C(5)); 166,4 (s, COOCH<sub>3</sub>); 208,4, 210,7 (2 s, C(3), C(9)). – MS.: 224 ( $M^+$ , C<sub>13</sub>H<sub>20</sub>O<sub>3</sub>, 10), 209 (5), 192 (11), 155 (11), 149 (27), 140 (12), 139 (31), 125 (10), 123 (16), 121 (13), 109 (21), 107 (29), 95 (11), 93 (13), 91 (12), 85 (16), 81 (15), 79 (25), 77 (12), 69 (36), 67 (11), 59 (18), 55 (18), 53 (11), 43 (100), 41 (29).

C<sub>13</sub>H<sub>20</sub>O<sub>3</sub> (224,29) Ber. C 69,61 H 8,99% Gef. C 69,48 H 8,87%

2-(1',1'-Dimethyl-5'-oxohexyl)-2-cyclopropencarbonsäure-methylester (12): Sdp. 95°/0,01 Torr. – UV. (3,5 mg in 5 ml): Endabsorption bis 310. – IR.: 3150 w, 3020 w S, 2965 s, 2955 s S, 2905 m S, 2870 m S, 2845 w S, 1790 w, 1725 s, 1470 m, 1460 m, 1450 m, 1435 s, 1410 w, 1385 w, 1365 m, 1345 m, 1250 m, 1195 s, 1175 s, 1030 m, 1010 m, 990 m, 955 m. – <sup>1</sup>H-NMR.: 1,16 (2 s, überlagert, 2 H<sub>3</sub>C-C(1')); 1,2–1,7 (m, 2 H–C(2'), 2 H–C(3')); 2,05 (s, 3 H–C(6')); 2,06 (d, überlagert durch s bei 2,05, 1 = 2, H–C(1)): 2,24–2,42 (t-artiges m, 2 H–C(4')): 3,58 (s, COOCH<sub>3</sub>); 6,22 (d, J = 2, H–C(3); Einstrahlung bei 2,06 ergibt ein s bei 6,22). – <sup>13</sup>C-NMR.: 25,8 (2 qa, überlagert, 2 H<sub>3</sub>C–C(1')); 29,8 (qa, C(6')); 51,3 (qa, COOCH<sub>3</sub>); 19,0, 40,2, 43,9 (3 t); 19,4 (d, C(1)); 92,6 (d, C(3)); 34,4 (s, C(1')); 122,0 (s, C(2)); 176,6 (s, COOCH<sub>3</sub>); 208,1 (s, C(5')). – MS.: 224 (M<sup>+</sup>, C<sub>13</sub>H<sub>20</sub>O<sub>3</sub>, noch siehtbar), 209 (4), 166 (11), 165 (26), 151 (12), 140 (10), 139 (70), 135 (13), 134 (14), 125 (10), 107 (81), 106 (30), 105 (11), 93 (17), 91 (30), 79 (28), 77 (13), 69 (11), 59 (11), 55 (13), 53 (11), 43 (100), 41 (26), 39 (15).

C<sub>13</sub>H<sub>20</sub>O<sub>3</sub> (224,29) Ber. C 69,61 H 8,99% Gef. C 69,45 H 8,89%

1,5,5-Trimethyl-9-oxabicyclo[4.2.1]non-6-en-8-carbonsäure-methylester (13): Sdp. 50–55°/0,006 Torr. – UV. (0,5626 mg in 10 ml): 220 (4700). UV. (8,9 mg in 5 ml): Endabsorption bis 260. – IR.: 3120 w, 3030 w S, 2980 m S, 2965 m, 2955 m, 2940 m, 2920 m, 2875 m, 2860 m, 2845 m, 1740 s, 1640 m, 1470 m, 1450 m, 1435 m, 1385 m S, 1380 m, 1365 m, 1345 w S, 1335 m S, 1305 w, 1280 m, 1265 m, 1245 m, 1220 m, 1200 m, 1195 m S, 1165 s, 1140 m, 1095 m, 1080 m, 1060 m, 1020 m, 1000 w, 960 w, 950 m, 945 w, 930 w, 895 w, 880 m. – <sup>1</sup>H-NMR.: 1,03, 1,10 (2 s, 2 H<sub>3</sub>C-C(5)); 1,47 (s, H<sub>3</sub>C-C(1)); 1,1–1,7 (m, 6 H); 3,62 (s, COOCH<sub>3</sub>); 3,77, 4,97 (2 d, J = 1,5, H-C(7), H-C(8)). – <sup>13</sup>C-NMR.: 23,4, 24,9, 25,4 (3 *qa*, 2 H<sub>3</sub>C-C(5)); 94,7 (s, C(1)); 166,7 (s, C(6)); 171,8 (s, COOCH<sub>3</sub>). – MS.: 224 (M<sup>+</sup>, C<sub>13</sub>H<sub>20</sub>O<sub>3</sub>, 79), 209 (7), 192 (18), 183 (100), 177 (30), 167 (13), 165 (38), 149 (25), 147 (14), 141 (18), 140 (17), 139 (79), 136 (16), 135 (16), 127 (17), 123 (34), 122 (33), 121 (42), 109 (38), 108 (20), 107 (44), 98 (38), 95 (38), 94 (47), 93 (30), 91 (20), 85 (25), 83 (29), 81 (31), 79 (52), 77 (18), 71 (21), 70 (21), 69 (26), 67 (35), 55 (27), 53 (16), 43 (66), 41 (49).

#### C<sub>13</sub>H<sub>20</sub>O<sub>3</sub> (224,29) Ber. C 69,61 H 8,99% Gef. C 69,51 H 8,86%

3,3,7-Trimethyl-2-oxobicyclo[5.1.0]octan-8-carbonsäure-methylester (14): Sdp. 65–70°/0,006 Torr. – UV. (4,6 mg in 5 ml): 286 (68). – IR.: 2965 m, 2955 m, 2930 m, 2910 m S, 2870 m, 1735 s, 1710 s, 1460 m, 1440 m, 1390 m, 1385 m, 1360 m, 1345 m, 1330 m, 1305 m, 1280 m, 1255 s, 1235 m, 1215 m, 1195 m, 1170 s, 1155 m, 1120 w, 1100 w, 1080 m, 1065 m, 1050 w, 1000 w, 955 m, 910 m, 895 w, 870 w, 860 w. – <sup>1</sup>H-NMR. (Reinheit ca. 95%): 0,94, 1,03, 1,11 (3 s, 2 H<sub>3</sub>C–C(3), H<sub>3</sub>C–C(7)); ca. 1,0–2,1 (m, 6 H); 2,50 (*AB*-System, J = 8,  $\delta_A = 2,73$ ,  $\delta_B = 2,27$ , H–C(1), H–C(8)); 3,63 (s, COOCH<sub>3</sub>). – <sup>13</sup>C-NMR. (Reinheit ca. 90%): 20,3, 22,4, 28,8 (3 *qa*, 2 H<sub>3</sub>C–C(3), H<sub>3</sub>C–C(7)); 51,9 (*qa*, COOCH<sub>3</sub>); 23,6, 30,8, 40,5 (3 t, C(4), C(5), C(6)); 35,3, 41,9 (2 d, C(1), C(8)); 30,8 (s, C(7)); 48,2 (s, C(3)); 170,0 (s, COOCH<sub>3</sub>); 205,2 (s, C(2)). – MS.: 224 ( $M^+$ , C<sub>13</sub>H<sub>20</sub>O<sub>3</sub>, 45), 209 (4), 196 (9), 192 (11), 181 (10), 168 (10), 167 (20), 165 (13), 154 (39), 149 (20), 147 (10), 141 (10), 139 (11), 138 (14), 137 (10), 127 (16), 126 (13), 125 (11), 123 (11), 122 (16), 121 (22), 114 (11), 109 (44), 108 (14), 107 (21), 95 (36), 93 (21), 87 (11), 82 (13), 81 (39), 79 (24), 77 (11), 70 (13), 69 (100), 68 (20), 67 (26), 59 (11), 55 (29), 53 (19), 43 (16), 41 (60).

#### C<sub>13</sub>H<sub>20</sub>O<sub>3</sub> (224,29) Ber. C 69,61 H 8,99% Gef. C 69,54 H 8,83%

5,5-Dimethyl-4,9-dioxodecansäure-methylester (15): Sdp. 100–110°/0,01 Torr. – UV. (5,6 mg in 5 ml): 285 (56). – IR.: 2970 m, 2955 m, 2940 m S, 2915 m S, 2880 w S, 2855 w S, 1745 s, 1720 s, 1710 s, 1470 m, 1440 m, 1410 m, 1390 m, 1365 m, 1360 m S, 1330 w, 1230 m, 1210 m, 1175 s, 1085 m, 1025 w, 1015 w S, 980 w, 960 w, 845 w. – <sup>1</sup>H-NMR.: 1,11 (2 s, überlagert, 2 H<sub>3</sub>C–C(5)); 1,25–1,55 (m, 2 H–C(6), 2 H–C(7)); 2,02 (s, 3 H–C(10)); 2,2–2,8 (m, 2 H–C(2), 2 H–C(3), 2 H–C(8)); 3,59 (s, COOCH<sub>3</sub>). – <sup>13</sup>C-NMR.: 24,4 (2 qa, überlagert, 2 H<sub>3</sub>C–C(5)); 29,7 (qa, C(10)); 51,5 (qa, COOCH<sub>3</sub>); 18,9, 27,8, 31,8, 39,3, 43,6 (5 t); 47,2 (s, C(5)); 173,2 (s, COOCH<sub>3</sub>); 208,0 (s, C(9)); 213,3 (s, C(4)). – MS.: 242 ( $M^+$ , C<sub>13</sub>H<sub>22</sub>O<sub>4</sub>, noch sichtbar), 158 (12), 127 (15), 126 (10), *115* (100), 109 (54), 71 (10), 69 (37), 55 (12), 43 (36), 41 (15).

### C<sub>13</sub>H<sub>22</sub>O<sub>4</sub> (242,31) Ber. C 64,44 H 9,15% Gef. C 64,05 H 9,05%

2.1.4. In Acetonitril/Wasser. Die Lösung von 100 mg (0,45 mmol) (E)-2 in 10 ml Acetonitril/Wasser 3 : 1 wurde in der Anordnung III (Quarz, Lampe A) bis-zu ca. 90proz. Umsatz bestrahlt. Die <sup>1</sup>H-NMR.- und GC.-Analyse (SE-30, 185°) ergab als Produktverteilung 85% 15 und 5% (Z)-2.

2.1.5. In 2-Propanol. Die Lösung von 650 mg (2,9 mmol) (E)-2 in 60 ml 2-Propanol wurde unter Zusatz von wasserfreiem Na<sub>2</sub>CO<sub>3</sub> in der Anordnung 1 bestrahlt (Umsatz 90%). Die Säulenchromatographie des Rohgemisches in Hexan/Äther/Cyclohexan 5:1:1 ergab 8% 5, 15% 12, 10% 15<sup>20</sup>), 46% 16 und Spuren von 11. – 3-(7'-Isopropyloxy-3', 3', 7'-trimethyl-1'-oxacyclohept-2'-yliden)propion-säure-methylester (16): Sdp. 70°/0,01 Torr. – UV. (0,84 mg in 20 ml): Endabsorption bis 240. – IR.: 2970 s, 2950 s, 2935 s S, 2905 m S, 2865 m, 2840 w, 1740 s, 1655 w, 1475 w S, 1465 m S, 1460 m, 1450 m, 1435 m, 1410 w, 1380 m, 1375 m, 1345 m, 1300 m, 1295 m, 1250 m, 1240 m, 1205 m, 1185 s, 1165 s, 1105 s, 1075 m, 1050 s, 1030 m, 990 s, 960 m, 910 w, 870 w. – <sup>1</sup>H-NMR.: 1,09, 1,41 (3 s, 2 s überlagert

71

<sup>&</sup>lt;sup>20</sup>) Im Photolyse-Rohprodukt konnte 15 nicht nachgewiesen werden.

bei 1,09, 2 H<sub>3</sub>C-C(3'), H<sub>3</sub>C-C(7')); 1,11, 1,20 (2 *d*, J = 6,5 (CH<sub>3</sub>)<sub>2</sub>CH; *ca*. 1,1-1,7 (*m*, 2 H-C(4'); 2 H-C(5'), 2 H-C(6')); 3,03 (*d*, J = 7, 2 H-C(2)); 3,58 (*s*, COOCH<sub>3</sub>); 4,17 (*m*, J = 6,5, (CH<sub>3</sub>)<sub>2</sub>CH; 4,98 (*t*, J = 7, H-C(3)).  $^{-13}$ C-NMR.: 24,6, 25,9, 28,7, 29,1 (5 *qa*, 2 *qa* überlagert bei 24,6, 2 H<sub>3</sub>C-C(3'), H<sub>3</sub>C-C(7'), (CH<sub>3</sub>)<sub>2</sub>CH); 51,6 (*qa*, COOCH<sub>3</sub>); 18,7, 32,0, 37,81, 41,4 (4 *t*); 64,7 (*d*, (CH<sub>3</sub>)<sub>2</sub>CH); 105,5 (*d*, C(3)); 39,4 (*s*, C(3')); 105,1 (*s*, C(7')); 161,6 (*s*, C(2')); 173,1 (*s*, COOCH<sub>3</sub>).  $^{-}$ MS.: 284 ( $M^+$ , C<sub>16</sub>H<sub>28</sub>O<sub>4</sub>, 4), 269 (noch sichtbar), 241 (2), 158 (33), 127 (22), *126* (100), 125 (12), 115 (26), 111 (12), 109 (18), 100 (14), 85 (11), 84 (42), 71 (34), 69 (27), 59 (12), 58 (12), 55 (20), 43 (41), 41 (27).

#### C<sub>16</sub>H<sub>28</sub>O<sub>4</sub> (284,38) Ber. C 67,57 H 9,93% Gef. C 67,63 H 10,04%

2.1.6. In Methanol. Die Lösung von 705 mg (3,1 mmol) (E)-2 in 70 ml Methanol (Uvasol, Merck) wurde  $3^{1}_{2}$  Std. unter Zusatz von wasserfreiem Na<sub>2</sub>CO<sub>3</sub> in der Anordnung I bestrahlt (Umsatz von (E)-2 ca. 100%). Die Säulenchromatographie des Rohproduktes in Hexan/Äther/Cyclohexan 5 : 1 : 1 ergab 540 mg (68%) 17, 13% (Z)-2 sowie 7% (E)-3.  $3-(7'-Methoxy-3', 3', 7'-trimethyl-1'-oxacyclohept-2'-yliden)propionsäure-methylester (17): Sdp. 85–90%,0.02 Torr. – UV. (4,7 mg in 5 ml): Endabsorption bis 260. – IR.: 2995 m, 2960 s S, 2955 s, 2940 s S, 2910 m, 2870 m S, 2845 w, 2830 w, 1745 s, 1670 w, 1475 m S, 1460 m, 1435 m, 1410 w, 1385 m, 1380 m, 1360 w, 1350 m, 1310 m S, 1300 m, 1280 m, 1250 m, 1225 m, 1195 s, 1185 s, 1165 s, 1130 m, 1100 s, 1085 m, 1080 m S, 1060 s, 1045 s, 1020 m, 990 m, 980 w S, 965 m, 925 w, 915 w, 895 w. – <sup>1</sup>H-NMR: 1,03, 1,11, 1,39 (3 s, 2 H<sub>3</sub>C-C(3'), H<sub>3</sub>C-C(7')); ca. 1,2-1,9 (m, 2 H-C(4'), 2 H-C(5'), 2 H-C(6')); 3,01 (d, J = 7, 2 H-C(2)); 3,32, 3,58 (2 s, CH<sub>3</sub>O-C(7'), COOCH<sub>3</sub>); 5,07 (t, J = 7, H-C(3)). – <sup>13</sup>C-NMR: 22,1, 28,1 (3 qa, 2 qa, überlagert bei 28,1, 2 CH<sub>3</sub>-C(3'), CH<sub>3</sub>-C(7')); 105,0 (s, C(7')); 160,6 (s, C(2')); 173,0 (s, COOH<sub>3</sub>). – MS:: 256 (<math>M^+$ , C<sub>14</sub>H<sub>24</sub>O<sub>4</sub>, noch sichtbar), 241 (noch sichtbar), 225 (10), 224 (8), 158 (62), 126 (69), 115 (26), 109 (11), 107 (10), 99 (21), 98 (100), 85 (71), 72 (41), 69 (50), 59 (13), 55 (44), 43 (26), 41 (32).

### C<sub>14</sub>H<sub>24</sub>O<sub>4</sub> (256,33) Ber. C 65,59 H 9,44% Gef. C 65,43 H 9,47%

2.1.7. In Acetonitril- $d_3$ . Die Lösung von 60 mg (0,27 mmol) (E)-2 in 0,5 ml CD<sub>3</sub>CN wurde in der Anordnung IV bis zu ca. 80proz. Umsatz bestrahlt. Bei der <sup>1</sup>H-NMR.-Analyse des Photolyseverlaufes konnte nur die Bildung von (Z)-2, (E)-3, 5 und 12 beobachtet werden.

2.2. Triplettsensibilisierung von (E)-2, 2.2.1. Photolyse von (E)-2 in Aceton mit Licht von  $\lambda \ge 280$  nm. Die Lösung von 2,24 g (10,0 mmol) (E)-2 in 220 ml Aceton wurde in der Anordnung II bestrahlt (Umsatz ca. 85%). Die Säulenchromatographie in Hexan/Äther/Cyclohexan 5 : 3 : 2 des Rohproduktes lieferte Mischfraktionen, deren <sup>1</sup>H-NMR.-spektroskopische und GC.-Analyse (SE-30, 165°) als Produkt-verteilung<sup>21</sup>) ergab: 3% (Z)-2, 30% (E)-3, 12% (Z)-3, 9% (E)-4, 6% (Z)-4, 20% 5 und 10% 18.

2.2.2. In Aceton-d<sub>6</sub>. Die Lösung von 53 mg (0,23 mmol) (*E*)-2 in 0,5 ml Aceton-d<sub>6</sub> wurde in der Anordnung III bis zu *ca.* 90proz. Umsatz von (*E*)-2 bestrahlt. Die <sup>1</sup>H-NMR.-Analyse des Photolyseverlaufes zeigt nur die Bildung von (*Z*)-2 und 5.

2.2.3. Photolyse von (E)-2 in Gegenwart von Acetophenon ( $\lambda \ge 280$  nm). Die Lösung von 2,24 g (10,0 mmol) (E)-2 wurde in 220 ml Benzol unter Zusatz von 7,2 g (60 mmol) Acetophenon in der Anordnung V bestrahlt (Umsatz ca. 90%). Die Aufarbeitung erfolgte wie in 2.2.1: 8% 5, 27% (E)-3, 20% (Z)-3, 20% (E)-4, 5% (Z)-4, 3% 19, 3% 18 sowie Spuren von (Z)-2. 6-Hydroxy-1,7,7-trimethyl-2-oxabicyclo[4.4.0]dec-4-en-3-on (18): Smp. 126-128°. – IR. (CHCl<sub>3</sub>): 3620 w, 3440 w br., 3040 w, 3000 m S, 2990 m S, 2950 m, 2925 m S, 2880 m, 2865 w, 1720 s, 1630 w, 1485 w, 1460 w, 1430 w, 1380 m, 1370 m, 1315 m, 1270 m, 1140 m, 1100 m, 1065 m, 1055 m S, 1005 m, 990 m, 980 m, 960 m, 890 w, 855 w, 835 m, 820 m. – <sup>1</sup>H-NMR. (CDCl<sub>3</sub>): 0,99, 1,04 (2 s, 2 H<sub>3</sub>C-C(7)); 1,41 (s, H<sub>3</sub>C-C(1)); 1,05-2,05 (m, 6H); 1,94 (s, HO-C(6)); 6,37 (AB-System, J = 10, $\delta_A = 6,63, \delta_B = 6,11, H-C(4), H-C(5)$ ).–<sup>13</sup>C-NMR.: 23,9, 24,7, 26,5 (3 qa, H<sub>3</sub>C-C(1), 2 H<sub>3</sub>C-C(7)); 74,2, 85,1 (2 s, C(1), C(6)); 164,9 (s, C(3)). – MS.: 210 (M<sup>+</sup>, C<sub>12</sub>H<sub>18</sub>O<sub>3</sub>, 3), 195 (3), 192 (6), 141 (19), 136 (14), 126 (12), 125 (100), 123 (29), 109 (11), 95 (10), 69 (16), 55 (15), 43 (29), 41 (21).

2.3. Photolysen von (Z)-2. 2.3.1. Mit Licht von  $\lambda = 254$  nm. Die Lösung von 33,6 mg (0,15 mmol) (Z)-2 in 0,3 ml CD<sub>3</sub>CN wurde in der Anordnung IV bestrahlt und der Photolyseverlauf <sup>1</sup>H-NMR.-

<sup>&</sup>lt;sup>21</sup>) Die Produkte liessen sich <sup>1</sup>H-NMR.-spektroskopisch im Photolyse-Rohprodukt nachweisen.

spektroskopisch verfolgt. Zunächst wurde nur (E)-2 gebildet. Bei 40proz. Umsatz von (Z)-2 lag dann das Produktenbild der Photolyse von (E)-2 vor (vgl. 2.1.7).

2.3.2. In Aceton-d<sub>6</sub> mit Licht von  $\lambda = 280$  nm. Die Lösung von 32,4 mg (0,14 mmol) (Z)-2 in 0,5 ml Aceton-d<sub>6</sub> wurde in der Anordnung V bestrahlt. Die <sup>1</sup>H-NMR.-spektroskopische Kontrolle zeigte rasche (Z/E)-Isomerisierung zu (E)-2; beim Vorliegen eines (1:1)-Gemisches der Isomeren trat die Bildung von 5 auf (vgl. auch 2.2.1).

2.4. Triplettsensibilisierung von (E)- bzw. (Z)-3. Die Lösungen von 29,2 mg (0,13 mmol) (E)-3 in 0,5 ml Aceton- $d_6$  und 24,0 mg (0,11 mmol) (Z)-3 in 0,4 ml Aceton- $d_6$  wurden parallel in der Anordnung V bestrahlt. Der <sup>1</sup>H-NMR.-Kontrolle zufolge lag in beiden Proben nach 3 Std. ein Gemisch von (E)- und (Z)-3 im Verhältnis von ca. 2 : 3 vor.

2.5. Photolyse von (E)- bzw. (Z)-6 mit Licht von  $\lambda = 254$  nm. a) Die Lösung von 11,0 mg (0,05 mmol) (E)-6 in 0,3 ml CD<sub>3</sub>CN wurde analog zu 2.1.1 bestrahlt. Bei quantitativem Reaktantumsatz lag der GC.-Analyse (SE-30, 175°) zufolge als Produktverteilung vor : 45% (E)-8 (Epimerengemisch), 25% (Z)-8, 15% 9 sowie Spuren von (E/Z)-10. b) Die Lösung von 13,5 mg (0,06 mmol) (Z)-6 in 0,3 ml CD<sub>3</sub>CN wurde wie unter a) bestrahlt und analysiert. Produktverteilung: 27% (Z)-8, 35% 9, 35% (E/Z)-10 sowie Spuren von (E)-8.

2.6. Photolysen von (E)-8 mit Licht von  $\lambda = 254$  nm. 2.6.1. In Pentan. Die Lösung von 150 mg (0,67 mmol) (E)-8 in 10 ml Pentan wurde 15 Std. in der Anordnung III (Quarz, Lampe A) bestrahlt (Umsatz 100%). Die GC.-Analyse (SE-30, 165°) des Rohproduktes ergab als Produktverteilung 50% (Z)- und 40% (E)-10.

2.6.2. In Acetonitril- $d_3$ . Die Bestrahlung einer Lösung von 22,3 mg (0,1 mmol) (E)-8 in 0,5 ml CD<sub>3</sub>CN analog zu 2.1.7 zeigte zunächst Isomerisierung zu (Z)-8. Bei vollständiger Umsetzung von (E/Z)-8 lag ein (1:1)-Gemisch von (E/Z)-10 vor.

2.7. Photolyse von (Z)-8 mit Licht von  $\lambda = 254$  nm. Die Lösung von 15,0 mg (0,07 mmol) (Z)-8 in 0,5 ml CD<sub>3</sub>CN wurde wie in 2.1.7 bestrahlt. Bei 90proz. Umsatz lag ein (1,5:1)-Gemisch von (E/Z)-10 vor.

2.8. Photolysen von 13 mit Licht von  $\lambda = 254$  nm. 2.8.1. In Pentan. Die Lösung von 99 mg (0,44 mmol) 13 in 10 ml Pentan wurde  $3\frac{1}{2}$  Std. analog zu 2.6.1 bestrahlt (Umsatz 95%). Die Säulenchromatographie des Rohproduktes in Hexan/Äther/Cyclohexan 5 : 1 : 1 ergab 47 mg (47%) 14.

2.8.2. In Acetonitril-d<sub>3</sub>. Die Bestrahlung (analog 2.8.1) einer Lösung von 50 mg (0,22 mmol) 13 in 0,5 ml CD<sub>3</sub>CN ergab bei 95 proz. Umsatz 75% 14.

3. Weitere Versuche. – 3.1. *Hydrierungen*. 3.1.1. Von (Z)-2. Die Lösung von 60 mg (0,27 mmol) (Z)-2 in 2 ml Äthanol wurde mit 6 mg 10 proz. Pd/CaCO<sub>3</sub> versetzt, 2 Std. unter  $H_2$  gerührt, durch *Celite* filtriert und eingedampft, wobei quantitativ 22 anfiel.

3.1.2. Von (E)-2. Die Lösung von 224 mg (1,0 mmol) (E)-2 in 5 ml Äthanol ergab unter den Bedingungen von 3.1.1 ein Gemisch. Die Säulenchromatographie des Rohproduktes in Hexan/Cyclohexan/Aceton 5 : 2 : 1 lieferte 150 mg (70%) 3-(1',6'-Epoxy-2',2',6'-trimethyl-cyclohexyl)propionsäure-methylester (22): Sdp. 70-75°/0,005 Torr. – IR.: 3000 w S, 2950 m, 2870 w, 2850 w S, 1740 s, 1475 w, 1460 w, 1445 w, 1435 m, 1425 w S, 1385 w, 1380 w, 1365 w, 1305 w, 1285 w, 1265 w, 1240 w, 1190 m, 1170 m, 1110 w, 1070 w, 1060 w S, 1015 w, 995 w, 985 w, 885 w, 870 w. – <sup>1</sup>H-NMR.: 1,01, 1,05 1,22 (3 s, 2 H<sub>3</sub>C-C(2'), H<sub>3</sub>C-C(6')); ca. 1,1-2,0 (m, 8 H); 2,15-2,45 (m, 2 H-C(2)); 3,60 (s, COOCH<sub>3</sub>). – <sup>13</sup>C-NMR.: 21,7, 24,8, 25,7 (3 qa, 2 H<sub>3</sub>C-C(2'), H<sub>3</sub>C-C(6')); 51,3 (qa, COOCH<sub>3</sub>). – MS.: 226 (M<sup>+</sup>, C<sub>13</sub>H<sub>22</sub>O<sub>3</sub>, 1) 211 (4), 208 (4), 195 (11), 194 (8), 168 (50), 156 (42), 139 (31), 136 (25), 125 (61), 124 (33), 115 (68), *III* (100), 109 (60), 99 (29), 96 (56), 95 (67), 93 (44), 83 (29), 82 (29), 81 (36), 79 (22), 74 (19), 71 (31), 69 (44), 67 (33), 59 (21), 55 (69), 43 (97), 41 (64).

# C<sub>13</sub>H<sub>22</sub>O<sub>3</sub> (226,31) Ber. C 68,99 H 9,80% Gef. C 68,99 H 9,78%

3.1.3. Von (E)- bzw. (Z)-3. Aus 40 mg (0,18 mmol) (E)-3 bzw. 92 mg (0,41 mmol) (Z)-3 wurde nach 3.1.1 quantitativ 3-(I',2',2'-Trimethyl-6'-oxo-I'-cyclohexyl) propionsäure-methylester (23) erhalten (GC.-isoliert). – UV. (6,6 mg in 5 ml): 293 (27). – IR.: 3020 w S, 2995 m S, 2970 s S, 2950 s, 2920 m, 2875 m, 2845 w S, 1740 s, 1705 s, 1465 m, 1455 m S, 1435 m, 1395 w, 1375 m, 1365 m, 1350 w, 1320 w S, 1310 m S, 1295 m, 1275 w, 1235 m, 1195 m, 1170 m, 1110 w S, 1100 w, 1075 w, 1050 w, 1020 w, 990 w, 935 w. – <sup>1</sup>H-NMR.: 0,88, 0,93, 0,98 (3 s, H<sub>3</sub>C-C(1'), 2 H<sub>3</sub>C-C(2')); 1,3–2,4 (m, 10 H); 3,60 (s, COOCH<sub>3</sub>). – <sup>13</sup>C-NMR.: 14,7, 24,3, 24,4 (3 qa, H<sub>3</sub>C-C(1'), 2 H<sub>3</sub>C-C(2')); 51,5 (qa, COOCH<sub>3</sub>); 22,2,

28,7, 29,5, 35,5, 38,0 (5 t); 40,6 (s, C(2')); 54,5 (s, C(1')); 173,8 (s,  $COOCH_3$ ); 215,2 (s, C(6')). – MS.: 226 ( $M^+$ ,  $C_{13}H_{22}O_3$ , 37), 195 (23), 194 (14), 179 (9), 170 (14), 153 (96), 140 (51), 139 (21), 138 (37), 135 (16), 126 (51), 125 (74), 111 (42), 109 (17), 99 (18), 98 (32), 97 (65), 96 (28), 95 (33), 83 (70), 81 (25), 69 (100), 67 (19), 55 (72), 43 (44), 41 (93).

C<sub>13</sub>H<sub>22</sub>O<sub>3</sub> (226,31) Ber. C 68,99 H 9,80% Gef. C 68,82 H 9,61%

3.1.4. Von (E)- bzw. (Z)-4. Aus 27 mg (0,12 mmol) (E)-4 bzw. 6,7 mg (0,03 mmol) (Z)-4 wurde nach 3.1.1 quantitativ  $3-(1'-Acetyl-2', 2'-dimethylclopentyl) propionsäure-methylester (24) erhalten; GC.-isoliert. – UV. (8,1 mg in 5 ml): 210 S (90), 295 (26). – IR.: 3025 w S, 2975 s S, 2960 s, 2910 m S, 2880 m, 1745 s, 1700 s, 1465 m, 1435 m, 1425 w S, 1390 w, 1370 m, 1355 m, 1295 m, 1195 s, 1175 s, 1110 w, 1060 w, 1030 w, 995 w, 965 w. – <sup>1</sup>H-NMR: 0,86, 1,12 (2 s, 2 H<sub>3</sub>C-C(2')); 1,3–2,4 (m, 10 H); 2,06 (s, CH<sub>3</sub>CO); 3,60 (s, COOCH<sub>3</sub>). – <sup>13</sup>C-NMR.: 24,1, 26,0, 29,0 (3 qa, 2 H<sub>3</sub>C-C(2'), CH<sub>3</sub>CO); 51,6 (qa, COOCH<sub>3</sub>); 19,7, 28,3, 29,9, 30,5, 40,4 (5 t); 44,7 (s, C(2')); 63,6 (s, C(1')); 173,6 (s, COOCH<sub>3</sub>); 212,2 (s, CH<sub>3</sub>CO). – MS.: 226 (<math>M^{+}$ , C<sub>13</sub>H<sub>22</sub>O<sub>3</sub>, noch sichtbar), 195 (8), 183 (53), 167 (10), 157 (22), 151 (68), 138 (10), 133 (14), 125 (96), 123 (29), 109 (97), 107 (20), 99 (19), 97 (47), 95 (28), 85 (10), 81 (27), 69 (17), 67 (23), 55 (34), 53 (12), 43 (100), 41 (32).

C<sub>13</sub>H<sub>22</sub>O<sub>3</sub> (226,31) Ber. C 68,99 H 9,80% Gef. C 69,07 H 9,85%

3.1.5. Von 12. Die Lösung von 245 mg (1,09 mmol) 12 in 5 ml Äthanol wurde mit 25 mg PtO<sub>2</sub>-Katalysator versetzt, 1 Std. bei 0° unter H<sub>2</sub> gerührt und wie in 3.1.1 aufgearbeitet. Laut GC.-Analyse (*SE-30*, 185°) lagen zwei Hauptprodukte im Verhältnis 7:3 vor. Die Säulenchromatographie des Rohproduktes in Hexan/Äther/Cyclohexan 3:2:1 lieferte 141 mg **37** (57%) und 53 mg **38** (21%). 2-(*I*; *I'-Dimethyl-5'-oxohexyl)cyclopropancarbonsäure-methylester* (**37**): GC.-isoliert. – UV. (4,8 mg in 5 ml): 215 (140), 283 (24). – IR.: 3090 w, 3015 w S, 2990 m S, 2955 s, 2900 m, 2875 m S, 2850 w, 1735 s, 1720 s, 1460 m S, 1440 m, 1410 w, 1390 m, 1365 m, 1195 s, 1170 s, 1105 w, 1095 w S, 1065 w, 1050 w, 945 w, 915 w. – <sup>1</sup>H-NMR.: 0,86, 0,90 (2 s, 2 H<sub>3</sub>C-C(1')); 0,8–1,8 (m, 8 H); 2,06 (s, 3 H-C(6')); 2,22 - 2,42 (t-artiges m, 2 H-C(4')); 3,60 (s, COOCH<sub>3</sub>). – <sup>13</sup>C-NMR.: 26,2, 26,3, 29,8 (3 *qa*, 2 H<sub>3</sub>C-C(1')); (73,1 (s, COOCH<sub>3</sub>); 9,1 (t, C(3)); 18,7, 43,9, 44,3 (3 *t*); 18,5, 32,2 (2 *d*); 33,0 (s, C(1')); 173,1 (s, COOCH<sub>3</sub>); 208,4 (s, C(5')). – MS.: 109 ( $M^+$  – 117, 15), 87 (13), 83 (10), 82 (100), 81 (13), 67 (21), 55 (21), 43 (35), 41 (19).

#### C<sub>13</sub>H<sub>22</sub>O<sub>3</sub> (226,31) Ber. C 68,99 H 9,80% Gef. C 69,04 H 9,73%

2,4,4-Trimethyl-8-oxononansäure-methylester (**38**): GC.-isoliert. – IR. 2955 s, 2910 m S, 2880 m S, 2855 m S, 1740 s, 1720 s, 1460 m, 1435 m, 1410 w, 1390 m, 1375 m, 1365 m, 1270 m, 1250 m, 1195 s, 1160 s, 1100 w, 1075 w, 990 w. – <sup>1</sup>H-NMR. (Reinheit ca. 95%): 0,82 (2 s, 2 H<sub>3</sub>C-C(4)); 1,0–2,1 (m, 6 H); 1,13 (d, J = 7, H<sub>3</sub>C-C(2)); 2,04 (s, 3 H-C(9)); 2,1–2,5 (m, H-C(2), 2 H-C(7)); 3,58 (s, COOCH<sub>3</sub>). – <sup>13</sup>C-NMR.: 20,4 (qa, H<sub>3</sub>C-C(2)); 26,8 (2 qa überlagert, 2 H<sub>3</sub>C-C(4)); 29,9 (qa, C(9)); 51,6 (qa, COOCH<sub>3</sub>); 18,5, 41,8, 44,5, 45,8 (4 t); 35,7 (d, C(2)); 33,2 (s, C(4)); 178,3 (s, COOCH<sub>3</sub>); 209,0 (s, C(8)). – MS.: 213 ( $M^+$  – 15, noch sichtbar), 181 (11), 171 (23), 143 (14), 111 (25), 109 (30), 83 (73), 69 (83), 55 (38), 43 (100), 41 (48).

3.1.6. Von **11**. Aus 170 mg (0,75 mmol) **11** wurde nach 3.1.1 quantitativ 5,5-Dimethyl-9-oxodecansäure-methylester (**35**) erhalten; GC.-isoliert. – IR.: 2995 w S, 2955 s, 2900 m, 2870 m, 2845 m, 1740 s, 1720 s, 1470 m, 1445 m, 1420 m, 1390 w, 1365 m, 1255 m, 1200 m, 1170 m, 1150 m S, 1130 m S, 1075 w. – <sup>1</sup>H-NMR.: 0,85 (2 s, überlagert, 2 H<sub>3</sub>C–C(5)); 1,0–1,7 (m, 8 H); 2,02 (s, 3 H–C(10)); 2,1–2,4 (2 t-artige m, überlagert, 2 H–C(2), 2 H–C(8)); 3,58 (s, COOCH<sub>3</sub>). – <sup>13</sup>C-NMR.: 27,0 (2 qa überlagert, 2 H<sub>3</sub>C–C(5)); 29,9 (qa, C(10)); 51,4 (qa, COOCH<sub>3</sub>); 18,4, 19,7, 34,8, 41,2, 44,5 (6 t, 2 t überlagert bei 41,2); 32,7 (s, C(5)); 174,2 (s, COOCH<sub>3</sub>); 209,2 (s, C(9)). – MS.: 228 ( $M^{+}$ , C <sub>13</sub>H<sub>24</sub>O<sub>3</sub>, 4), 213 (6), 197 (24), 181 (22), 171 (48), 143 (33), 139 (39), 127 (18), 121 (11), 111 (6), 109 (77), 97 (21), 95 (14), 85 (29), 83 (39), 74 (14), 71 (19), 69 (100), 59 (13), 58 (18), 55 (33), 43 (100), 41 (44).

C<sub>13</sub>H<sub>24</sub>O<sub>3</sub> (228,32) Ber. C 68,38 H 10,59% Gef. C 68,35 H 10,61%

3.1.7. Von (E)-8 bzw. (Z)-8. Aus 48 mg (0,21 mmol) (E)-8 bzw. 14 mg (0,06 mmol) (Z)-8 wurde nach 3.1.1 quantitativ ( $1'R^{*,5'}R^{*}$ )-3-(5'-Acetyl-2', 2'-dimethylcyclopentyl)propionsäure-methylester (32) erhalten; GC.-isoliert. – UV. (4,5 mg in 5 ml): 285 (20). – IR.: 3000 w S, 2955 s, 2935 s S, 2870 m, 1740 s, 1710 s, 1460 m, 1435 m, 1420 w, 1390 w, 1370 m, 1355 m, 1320 w, 1310 w S, 1285 w, 1250 m,

1853

1205 m, 1175 m, 1160 m.  $- {}^{1}$ H-NMR.: 0,82, 1,04 (2 s, 2 H<sub>3</sub>C-C(2')); 1,2-2,8 (m, 10 H); 2,07 (s, CH<sub>3</sub>CO); 3,55 (s, COOCH<sub>3</sub>).  $- {}^{13}$ C-NMR.: 21,8, 27,7, 29,0 (3 *qa*, 2 H<sub>3</sub>C-C(2'), CH<sub>3</sub>CO); 51,5 (*qa*, COOCH<sub>3</sub>); 25,3, 27,2, 33,4, 41,1 (4 *t*); 49,6, 57,6 (2 *d*, C(1'), C(5')); 42,3 (s, C(2')); 174,1 (s, COOCH<sub>3</sub>); 211,1 (s, CH<sub>3</sub>CO). - MS.: 226 ( $M^+$ , C<sub>13</sub>H<sub>22</sub>O<sub>3</sub>, 17), 208 (5), 211 (5), 195 (14), 194 (27), 179 (17), 157 (10), 153 (25), 152 (39), 151 (27), 139 (59), 125 (25), 123 (15), 109 (41), 107 (12), 97 (14), 95 (22), 93 (10), 87 (10), 85 (14), 81 (24), 74 (10), 69 (19), 67 (19), 55 (24), 43 (100), 41 (32).

C<sub>13</sub>H<sub>22</sub>O<sub>3</sub> (226,31) Ber. C 68,99 H 9,80% Gef. C 68,80 H 9,92%

3.1.8. Von **9**. Aus 34 mg (0,15 mmol) **9** wurde nach 3.1.1 quantitativ  $(1'R^*, 5'S^*)$ -3-(5'-Acetyl-2', 2'-dimethylcyclopentyl) propionsäure-methylester (**33**) erhalten, Sdp. 60–65°/0,02 Torr. – IR.: 3000 w S, 2955 s, 2935 m S, 2870 m, 1740 s, 1710 s, 1460 m, 1435 m, 1420 m S, 1385 w, 1365 m, 1355 m, 1315 w, 1280 m, 1245 m, 1195 m, 1160 s. – <sup>1</sup>H-NMR. (Isomereneinheit 80%): 0,93, 1,00 (2 s, 2 H<sub>3</sub>C-C(2')); ca. 1,1–2,2 und 2,9–3,2 (m, 10 H); 3,57 (s, COOCH<sub>3</sub>). – MS.: 226 ( $M^+$ , C<sub>13</sub>H<sub>22</sub>O<sub>3</sub>, 19), gleiches Fragmentierungsverhalten wie bei **32**.

C<sub>13</sub>H<sub>22</sub>O<sub>3</sub> (226,31) Ber. C 68,99 H 9,80% Gef. C 68,82 H 9,98%

3.2. Reduktion von (E)-8 und oxydativer Abbau von 30. Zur Vorlage von 212 mg (5,5 mmol) NaBH<sub>4</sub> in 25 ml CH<sub>3</sub>OH/H<sub>2</sub>O 1:1 wurde bei 0° die Lösung von 205 mg (0,91 mmol) (E)-8 in 10 ml CH<sub>3</sub>OH getropft. Nach  $1\frac{1}{2}$  Std. Rühren bei RT. wurde mit 2N HCl hydrolysiert und in Äther aufgearbeitet. Als Rohprodukt fielen 209 mg Hydroxyester (E)-30 an ((1:1,5)-Epimerengemisch laut GC.-Analyse (SE-30, 180°)). Das Rohprodukt wurde in 2 ml Benzol unter starkem Rühren zur Lösung von 450 mg (2,85 mmol) fein zerriebenem KMnO<sub>4</sub> und 72 mg (0,2 mmol) Dicyclohexyl-18-crown-6 (Fluka; umkristallisiert aus CH<sub>3</sub>CN) in 5 ml Benzol getropft. Das nicht vollständig gelöste KMnO<sub>4</sub> musste im Verlaufe der Reaktion mehrmals im Reaktionsgut erneut fein zerrieben werden. Nach 24 Std. wurde vom festen Rückstand abfiltriert und in Benzol aufgearbeitet. Die Säulenchromatographie (Flash) des Rohproduktes (125 mg) in Hexan/Cyclohexan/Aceton 8:1:1 ergab 41 mg (27%) Lacton 31 und 24 mg (12%) (E)-8. Der feste Rückstand wurde in 2N NaOH aufgenommen und nach kurzem Rühren vom Mangandioxid abfiltriert. Die Lösung wurde durch Waschen mit Äther von Dicyclohexyl-18-crown-6 befreit, mit konz. HCl-Lösung unter Eiskühlung angesäuert, mit NaCl gesättigt, 2mal mit Äther extrahiert und aufgearbeitet. Es fielen 28 mg einer Hydroxysäure unbekannter Struktur an. 4,8,8-Trimethyl-3-oxabicyclo/3,3,0/octan-2-on (31): GC.-isoliert. - IR.: 2960 s, 2875 m, 1775 s, 1465 m, 1390 w, 1380 m, 1370 m, 1340 m, 1315 w, 1300 m, 1270 w, 1210 m S, 1185 s, 1120 m, 1080 m, 1065 m, 1045 m, 1030 w S, 985 w, 970 m, 955 m, 945 w, 930 w, 905 w, 885 w. -<sup>1</sup>H-NMR.: 1,12 (2 s überlagert, 2 H<sub>3</sub>C-C(8)); 1,33 (d, J = 6,5, H<sub>3</sub>C-C(4)); ca. 1,3-2,1 (m, 4 H); 2,4-2,6 (*m*, 2 H); 3,9-4,2 (*m*, H-C(4)). - MS.: 168 ( $M^+$ ,  $C_{10}H_{16}O_2$ , 22), 153 (26), 150 (10), 140 (16), 139 (15), 125 (17), 123 (33), 122 (30), 113 (11), 112 (15), 109 (57), 108 (25), 107 (12), 99 (47), 96 (65), 95 (47), 82 (15), 81 (100), 79 (12), 69 (24), 68 (58), 67 (26), 55 (38), 53 (13), 43 (22), 41 (34).

3.3. Reduktion von (Z)-9 und oxydativer Abbau des Reduktionsproduktes. Bei der Reduktion von 70 mg (0,31 mmol) (Z)-9 mit 127 mg (3,0 mmol) NaBH<sub>4</sub> unter den Bedingungen von 3.2 fielen 66 mg Rohprodukt an (Epimerenverhältnis der Hydroxyester nach GC.-Analyse ca. 1:1,5). Nach der Umsetzung mit 195 mg (1,23 mmol) KMnO<sub>4</sub> und 15 mg (0,4 mmol) Dicyclohexyl-18-crown-6 in Benzol analog zu 3.2 konnte in der organischen Phase (22 mg) kein Lacton **31** nachgewiesen werden. Aus der basischen Wasserphase wurden 47 mg einer nicht weiter untersuchten Hydroxysäure isoliert.

3.4. Epimerisierung von 5. Zur Vorlage von 13 ml abs. THF und 7 ml abs. Isopropylcyclohexylamin wurden unter Argon bei  $-78^{\circ}$  20 ml ca. 2M Lösung von Butyllithium in Hexan getropft. Zu 1,5 ml dieser Lösung wurden bei  $-78^{\circ}$  186 mg (0,83 mmol) 5 in 3 ml abs. THF getropft. Nach 30 Min. Rühren wurde auf ca.  $-10^{\circ}$  erwärmt, mit gesättigter NH<sub>4</sub>Cl-Lösung hydrolysiert und in Äther aufgearbeitet. Laut GC. (SE-30, 160°) erwies sich das Rohprodukt als ein (1 : 1,8)-Gemisch der Epimeren 5 und 19. (6R\*,8R\*)-2,2,6-Trimethyl-7-oxabicyclo/4.3.0/non-9-en-8-carbonsäure-methylester (19): GC.-isoliett. – UV. (0,4367 mg in 10 ml): 203 (5700), 220 S (2100), Endabsorption bis 250. – IR.: 2995 m, 2985 m S, 2965 s, 2940 s, 2865 m, 2845 m, 1765 s, 1735 s, 1650 w, 1455 m, 1435 m, 1385 w, 1370 w, 1345 w, 1330 w, 1315 w, 1290 m S, 1280 m, 1240 m, 1200 s, 1175 s, 1135 s, 1105 s, 1040 w, 1020 m, 1005 m, 990 w S, 965 w, 940 w, 910 w, 880 w, 865 w, 830 w. – <sup>1</sup>H-NMR.: 1,09, 1,16, 1,36 (3 s, 2 H<sub>3</sub>C-C(2), H<sub>3</sub>C-C(6)); ca. 1,1-2,0 (m, 6 H); 3,65 (s, COOCH<sub>3</sub>); 5,02, 5,21 (2 d, J = 1,5, H-C(8), H-C(9)). – <sup>13</sup>C-NMR.: 25,6, 26,0, 30,5 (3 qa, 2 H<sub>3</sub>C-C(2), H<sub>3</sub>C-C(6)); 52,1 (qa, COOCH<sub>3</sub>);

20,4, 41,3 (3 t, 2 t überlagert bei 41,31); 81,2 (d, C(8)); 114,5 (d, C(9)); 35,0 (s, C(2)); 90,1 (s, C(6)); 155,9 (s, C(1)); 172,4 (s, COOCH<sub>3</sub>)). – MS.: 224 ( $M^+$ , C<sub>13</sub>H<sub>20</sub>O<sub>3</sub>, noch sichtbar); gleiches Fragmentierungsverhalten wie bei **5**.

C<sub>13</sub>H<sub>20</sub>O<sub>3</sub> (224,29) Ber. C 69,61 H 8,99% Gef. C 69,43 H 8,98%

3.5. Reduktion von 5 bzw. 19. a) Zur Vorlage von 114 mg (3,0 mmol) LiAlH<sub>4</sub> in 20 ml Äther wurde bei RT. die Lösung von 112 mg (0,5 mmol) 5 getropft. Das Gemisch wurde  $1\frac{1}{2}$  Std. unter Rückfluss erwärmt und in Äther aufgearbeitet. Es fielen 94 mg 27 (96%) an. b) Die analoge Reduktion von 126 mg (0,56 mmol) (1 : 1,8)-Isomerengemisch 5/19 mit 200 mg (5,3 mmol) LiAlH<sub>4</sub> ergab 103 mg (94%) Gemisch der epimeren Alkohole 27 und 28 (GC.: Isomerenverhältnis 1 : 1,7). (6R\*,8S\*)-2,2,6-Trimethyl-7-oxabicyclo[4.3.0]non-9-en-8-methanol (27): GC.-isoliert. – UV. (3,7 mg in 250 ml): 205 (6900), Endabsorption bis 230. – IR.: 3605 m, 3470 w br., 3080 w, 3000 m, 2970 s, 2940 s, 2870 s, 1645 w, 1460 m, 1395 w S, 1385 m, 1370 m, 1350 w, 1330 w, 1315 w S, 1290 w, 1220 w, 1200 w S, 1195 w, 1175 w, 1165 w S, 1135 m, 1090 m, 1075 m, 1060 w S, 1035 s, 995 w S, 990 w, 975 w, 935 w, 920 w, 890 w, 880 w, 860 w, 835 w. – <sup>1</sup>H-NMR.: 1,08, 1,15, 1,37 (3 s, 2 H<sub>3</sub>C-C(2), H<sub>3</sub>C-C(6)); 1,0-2,0 (m, 6 H und 1 HO); 3,25-3,55 (m, CH<sub>2</sub>OH); 4,50-4,70 (m, H-C(8)); 5,17 (d, J = 2, H-C(9)); s. auch Tab. 3. – <sup>13</sup>C-NMR.: 25,5, 28,3, 30,5 (3 qa, 2 H<sub>3</sub>C-C(2), H<sub>3</sub>C-C(6)); 10,5, 41,2, 41,7 (3 t); 66,4 (t, CH<sub>2</sub>OH); 83,9 (d, C(8)); 115,6 (d, C(9)); 34,8 (s, C(2)); 87,7 (s, C(6)); 154,7 (s, C(1)). – MS.: 196 (M<sup>+</sup>, C<sub>12</sub>H<sub>20</sub>O<sub>2</sub>, noch sichtbar), 166 (12), 165 (100), 109 (16), 107 (10), 95 (65), 69 (10), 55 (10), 43 (17), 41 (13).

C<sub>12</sub>H<sub>20</sub>O<sub>2</sub> (196,28) Ber. C 73,43 H 10,27% Gef. C 73,60 H 10,32%

 $(6R^*, 8R^*) - 2, 2, 6$ -Trimethyl-7-oxabicyclo[4.3.0]non-9-en-8-methanol (28): GC.-isoliert. – UV. (0,4353 mg in 10 ml): 204 (6500), Endabsorption bis 230. – IR.: 3590 w, 3460 w br., 3070 w, 2990 m S, 2965 s, 2935 s, 2865 s, 1650 w, 1455 m, 1395 w S, 1385 m, 1370 m, 1355 w, 1330 w, 1315 w, 1290 w, 1240 w, 1220 w, 1205 w, 1195 w, 1175 w, 1170 w S, 1135 m, 1095 m, 1070 m, 1035 m, 1020 w, 995 w S, 990 w, 975 w, 940 w, 930 w, 895 w, 885 w, 875 w, 860 w, 855 w. – <sup>1</sup>H-NMR.: 1,08, 1,16, 1,34 (3 s, 2 H<sub>3</sub>C-C(2), H<sub>3</sub>C-C(6)); ca. 1,2-2,0 (m, 6 H und 1 HO); 3,20-3,60 (m, CH<sub>2</sub>OH, erscheint bei der Zugabe von D<sub>2</sub>O als ein verdoppeltes *AB*-System); 4,60-4,76 (*t*-artiges m, H-C(8)); 5,16 (br. s, w<sub>1/2</sub> = 2, H-C(9)); s. auch *Tab. 3.* – <sup>13</sup>C-NMR.: 25,8, 26,0, 30,6 (3 *qa*, 3 CH<sub>3</sub>); 20,4, 41,3, 42,1 (3 t); 65,4 (t, CH<sub>2</sub>OH); 82,8 (d, C(8)); 116,5 (d, C(9)); 34,6 (s, C(2)); 87,9 (s, C(6)); 155,7 (s, C(1)). MS.: 196 (M<sup>+</sup>, C<sub>12</sub>H<sub>20</sub>O<sub>2</sub>, noch sichtbar); gleiches Fragmentierungsverhalten wie bei **27**.

C<sub>12</sub>H<sub>20</sub>O<sub>2</sub> (196,28) Ber. C 73,43 H 10,27% Gef. C 73,07 H 10,24%

| Eu(dpm) <sub>3</sub> /27 | $H_{3}C-C(6)^{a}$ | Eu(dpm) <sub>3</sub> / <b>28</b> | $H_3C-C(6)^a)$ |  |
|--------------------------|-------------------|----------------------------------|----------------|--|
|                          | 1,37              |                                  | 1,34           |  |
| 0,043                    | 1,56              | 0,045                            | 1,43           |  |
| 0,091                    | 1,79              | 0,097                            | 1,57           |  |
| 0,130                    | 1,98              | 0,137                            | 1,69           |  |
| 0,268                    | 2,65              | 0,279                            | 2,19           |  |
| 0,425                    | 3,45              | 0,438                            | 2,83           |  |

Tabelle 3. <sup>1</sup>H-NMR.-Verschiebungsexperimente mit 27 und 28

<sup>a</sup>)  $\delta$ -Wert in ppm (CCl<sub>4</sub>); bei zunehmender Konzentration von Eu(dpm)<sub>3</sub> trat starke Verbreiterung des *s* von H<sub>3</sub>C-C(6) ein. Die Werte entsprechen den Zentren des Signals.

3.6. *Hydrolysen*. 3.6.1. *Von* **16** *bzw. von* **17**. a) Die Lösung von 85 mg (0,33 mmol) **17** und 25 mg (0,28 mmol) Oxalsäure in 4 ml Dioxan/Wasser 1 : 1 wurde 3 Std. bei RT. gerührt. Die Aufarbeitung in Äther ergab quantitativ **15**. – b) Die Hydrolyse von 60 mg (0,21 mmol) **16** mit 15 mg (0,17 mmol) Oxalsäure in 3 ml Dioxan/Wasser 1 : 1 ergab in 86 proz. Ausbeute **15**.

3.7. Lewissäure-katalysierte Isomerisierungen.

3.7.1. Behandlung von (E)-2 mit Bortrifluoridäthylätherat. Eine Lösung von 224 mg (1,0 mmol (E)-2 in 5 ml Benzol wurde mit 142 mg (1,0 mmol)  $BF_3$ -Äthylätherat versetzt. Nach 15 Min. Rühren

wurde mit 20 ml Benzol verdünnt, mit 5 ml Wasser hydrolysiert und in Benzol aufgearbeitet. Das Rohprodukt enthielt der GC.-Analyse (*SE-30*, 180°) zufolge zu 95% (*E*)-4-(1', 2', 2'-Trimethylcyclopentyl)-4-oxo-2-butensäure-methylester (**20**); GC.-isoliert. – UV. (0,3028 mg in 20 ml): 225 (15500). UV. (5,4 mg in 5 ml): 350 (33). – IR.: 3025 w S, 2960 s, 2940 m S, 2910 m S, 2875 m, 1730 s, 1690 s, 1635 w, 1620 w, 1460 m, 1435 m, 1390 w, 1380 w, 1370 w, 1300 s, 1265 s, 1195 m, 1165 s, 1040 w, 1030 w, 1015 w, 1000 m, 980 m, 945 w. –<sup>1</sup>H-NMR. (Reinheit *ca.* 95%): 0,86, 1,10, 1,19 (3 s, 2 H<sub>3</sub>C-C(2'), H<sub>3</sub>C-C(1')); 1,25–2,0 und 2,25–2,6 (m, 6 H); 3,74 (s, COOCH<sub>3</sub>); 6,94 (*AB*-System, *J* = 15,  $\delta_A$  = 7,29,  $\delta_B$  = 6,59, H–C(2), H–C(3)). – <sup>13</sup>C-NMR: 20,2, 24,5, 25,4 (3 *qa*, H<sub>3</sub>C-C(1'), 2 H<sub>3</sub>C-C(2')); 52,1 (*qa*, COOCH<sub>3</sub>); 19,7, 34,3, 40,4 (3 *t*); 129,7, 137,7 (2 *d*, C(2), C(3)); 44,3 (s, C(2')); 59,2 (s, C(1')); 166,0 (s, COOCH<sub>3</sub>); 203,0 (s, C(4)). – MS.: 224 ( $M^+$ , C<sub>13</sub>H<sub>20</sub>O<sub>3</sub>, 1), 193 (8), 155 (13), 124 (10), 123 (24), 114 (52), 113 (16), 111 (72), 95 (43), 70 (16), 69 (100), 67 (17), 59 (12), 55 (67), 53 (12), 43 (11), 41 (47).

### C<sub>13</sub>H<sub>20</sub>O<sub>3</sub> (224,29) Ber. C 69,61 H 8,99% Gef. C 69,60 H 8,95%

3.7.2. Behandlung von (Z)-2 mit  $FeCl_3$ . Die Lösung von 33,6 mg (0,15 mmol) (Z)-2 in 0,5 ml CCl<sub>4</sub> wurde in einem <sup>1</sup>H-NMR.-Messrohr mit einer Spatelspitze FeCl<sub>3</sub> versetzt und kurz geschüttelt. Es trat vollständige Isomerisierung zum Furan 21 ein (<sup>1</sup>H-NMR.-Analyse). Die Lösung wurde durch *Celite* filtriert und eingedampft. Das Produkt wurde gas-chromatographisch (*OV-17*, 185°) gereinigt. 6-*Methyl-6-(5'-methoxy-2'-furyl)-2-heptanon* (21): GC.-isoliert. – UV. (0,4097 mg in 40 ml): 225 (9200). UV. (4,1 mg in 2 ml): 280 (26). – IR.: 3130 w, 3110 w, 3010 m S, 2960 s, 2940 s, 2910 m S, 2870 m S, 2840 m, 1715 s, 1610 s, 1580 s, 1460 m S, 1450 m, 1435 m, 1410 m, 1385 m, 1370 s, 1360 s, 1320 w, 1260 s, 1220 w, 1280 m, 1270 m S, 1260 m, 1215 m, 1065 m, 1015 m, 970 m, 935 m. – <sup>1</sup>H-NMR.: 1,18 (2 s überlagert, H<sub>3</sub>C-C(6), 3 H-C(7)); 1,25-1,55 (m, 2 H-C(4), 2 H-C(5)); 2,00 (s, 3 H-C(1)); 2,15-2,35 (*t*-artiges m, 2 H-C(3)); 3,77 (s, OCH<sub>3</sub>); 4,87, 5,74 (2 *d*, *J* = 3,5, H-C(3'), H-C(4')). – <sup>13</sup>C-NMR.: 26,6, 29,4 (3 *qa*, 2 *qa* überlagert bei 26,6, C(1), CH<sub>3</sub>-C(6), C(7); 57,3 (*qa*, OCH<sub>3</sub>); 19,2, 41,2, 43,7 (3 *t*); 79,0, 104,3 (2 *d*, C(3'), C(4') oder vice versa); 35,4 (s, C(6)); 152,0, 160,4 (2 s, C(2'), C(5') oder vice versa); 208,1 (s, C(2)). – MS.: 224 (*M*<sup>+</sup>, C<sub>13</sub>H<sub>20</sub>O<sub>3</sub>, 22), 140 (11), *139* (100), 43 (17).

Die Elementaranalysen wurden im mikroanalytischen Laboratorium der ETHZ (Leitung: D. Manser) ausgeführt. Die Aufnahme der NMR.-Spektren verdanken wir Frl. B. Brandenberg und Herrn K. Hiltbrunner (Leitung des NMR.-Service: Prof. Dr. J. F. M. Oth). Die Massenspektren wurden von Frau C. Golgowski unter der Leitung von Prof. Dr. J. Seibl aufgenommen. Wir danken Herrn K. Job für die Mitarbeit bei der Herstellung der zu bestrahlenden Substanzen und Herrn Th. Jenny für die tatkräftige Unterstützung bei der Durchführung der Versuche.

#### LITERATURVERZEICHNIS

- [1] 110. Mitt.: K. Ishii, H. R. Wolf & O. Jeger, Helv. 63, 1520 (1980).
- [2] B. Frei, W.B. Schweizer, H.R. Wolf & O. Jeger, Recl. Trav. Chim. Pays Bas 98, 271 (1979).
- [3] B. Frei, H. Eichenberger, B. von Wartburg, H. R. Wolf & O. Jeger, Helv. 60, 2968 (1977).
- [4] H. Eichenberger, H. R. Wolf & O. Jeger, Helv. 59, 1253 (1976).
- [5] W.D. Closson, S.F. Brady & P. J. Orenski, J. Org. Chem. 30, 4026 (1965).
- [6] T. Oritani & K. Yamashita, Agric. Biol. Chem. 38, 801 (1974).
- [7] A.P.Alder, H.R.Wolf & O. Jeger, Helv. 61, 2681 (1978).
- [8] B. Frei, H. R. Wolf & O. Jeger, Helv. 62, 1645 (1979).
- [9] B. von Wartburg, H.R. Wolf & O. Jeger, Helv. 56, 1948 (1973).
- [10] B. Frei, G. de Weck, K. Müllen, H.R. Wolf & O. Jeger, Helv. 62, 553 (1979).
- [11] K. Ishikawa, G.W. Griffin & J. Lev, J. Org. Chem. 41, 3747 (1976).
- [12] A.P. Alder, H.R. Wolf & O. Jeger, in Vorbereitung.
- [13] K. N. Houk, N. G. Roudan, C. Santiago, C. J.Gallo, R.W. Gandour & G.W. Griffin, J. Am. Chem. Soc. 102, 1504 (1980).
- [14] P. Chaquin & J. Kossanyi, Tetrahedron Lett. 1979, 3413.
- [15] W.C. Still, M. Kahan & A. Mitra, J. Org. Chem. 43, 2923 (1973).